% \iffalse meta-comment % % File: siunitx-number.dtx Copyright (C) 2014-2019,2021-2024 Joseph Wright % % It may be distributed and/or modified under the conditions of the % LaTeX Project Public License (LPPL), either version 1.3c of this % license or (at your option) any later version. The latest version % of this license is in the file % % https://www.latex-project.org/lppl.txt % % This file is part of the "siunitx bundle" (The Work in LPPL) % and all files in that bundle must be distributed together. % % The released version of this bundle is available from CTAN. % % ----------------------------------------------------------------------- % % The development version of the bundle can be found at % % https://github.com/josephwright/siunitx % % for those people who are interested. % % ----------------------------------------------------------------------- % %<*driver> \documentclass{l3doc} % Additional commands needed in this source \ProvideDocumentCommand\email{m}{\href{mailto:#1}{\nolinkurl{#1}}} \ProvideDocumentCommand\foreign{m}{\textit{#1}} % The next line is needed so that \GetFileInfo will be able to pick up % version data \usepackage{siunitx} \begin{document} \DocInput{\jobname.dtx} \end{document} % % \fi % % \GetFileInfo{siunitx.sty} % % \title{^^A % \pkg{siunitx-number} -- Parsing and formatting numbers^^A % \thanks{This file describes \fileversion, % last revised \filedate.}^^A % } % % \author{^^A % Joseph Wright^^A % \thanks{^^A % E-mail: % \email{joseph@texdev.net}^^A % }^^A % } % % \date{Released \filedate} % % \maketitle % % \begin{documentation} % % This submodule is dedicated to parsing and formatting numbers. A small number % of \LaTeXe{} math mode commands are assumed to be available as part of the % formatted output. The sign commands \cs{mp}, \cs{pm}, \cs{ll}, \cs{le}, % \cs{gg} and \cs{ge} are used to replace two-character input; \cs{pm} % is also required for the output of uncertainties, and \cs{sim} for % approximate values. The standard settings require \cs{times}. For the display % of colored negative numbers, the command \cs{color} is assumed to be % available. Where the latter may apply, numbers should be printed inside a % group: note that \TeX{} grouping is not added \emph{within} formatted numbers % as they may need to be decomposed into parts (see % \cs{siunitx_number_output:NN}). Such a color will be the \emph{first} part of % the result, meaning that a test for an initial |\color| and following % brace group may be used to detect/remove/adjust this part. % % \section{Formatting numbers} % % \begin{function}{\siunitx_number_parse:nN, \siunitx_number_parse:VN} % \begin{syntax} % \cs{siunitx_number_parse:nN} \Arg{number} \meta{tl~var} % \end{syntax} % Parses the \emph{number} and stores the resulting internal representation % in the \meta{tl~var}. The parsing is influenced by the various key--value % settings for numerical input. The \meta{number} should comprise a single % real value, possibly with comparator, uncertainty and exponent parts. % If the number is invalid, or if number parsing is disabled, the result will % be an entirely empty \meta{tl~var}. % % The structure of a valid number is: % \begin{quote} % \marg{comparator}\marg{sign}\marg{integer}\marg{decimal} % \marg{uncertainty}\\ % \marg{exponent sign}\marg{exponent} % \end{quote} % where the two sign parts must be single tokens if present, % and all other components % must be given in braces. The number will have at least one digit for either the % \meta{integer} and \meta{exponent} parts.. The % \meta{uncertainty} part should either be blank or contain an % \meta{identifier} (as a brace group), followed by one or more data entries. % Valid uncertainty \meta{identifiers} currently are % \begin{itemize} % \item[\texttt{S}] A single symmetrical uncertainty (\foreign{e.g.}~a % statistical standard uncertainty). The data item here is a single % value representing the uncertainty in the least-significant digits. % \item[\texttt{A}] A single unsymmetrical uncertainty. The data item here % contains two brace groups, each using the same least-significant digit % approach as the \texttt{S} type. The positive component is given first % and the negative second, and neither has a sign. % \item A combination of \texttt{S} and \texttt{A} entries, with one data % item per entry. These are then iterated over to be output in order. % \end{itemize} % If a decimal marker should be explicitly recorded as present for a value % with no decimal digits, the \meta{decimal} part should contain % \cs{empty}. % \end{function} % % \begin{function}{\siunitx_number_process:NN, \siunitx_number_process:cc} % \begin{syntax} % \cs{siunitx_number_process:N} \meta{tl~var1} \meta{tl~var2} % \end{syntax} % Applies a set of number processing operations to the \meta{internal % number} stored in the \meta{tl~var1}, \foreign{viz.}~in order % \begin{enumerate} % \item Dropping uncertainty % \item Converting to scientific mode (or similar) % \item Rounding % \item Dropping zero decimal part % \item Forcing a minimum number of digits % \end{enumerate} % with the result stored in \meta{tl~var2}. % \end{function} % % \begin{function}[EXP] % { % \siunitx_number_output:N, \siunitx_number_output:c % \siunitx_number_output:n, % \siunitx_number_output:NN, \siunitx_number_output:cN % \siunitx_number_output:nN % } % \begin{syntax} % \cs{siunitx_number_output:N} \meta{number} % \cs{siunitx_number_output:NN} \meta{number} \meta{marker} % \end{syntax} % Formats the \meta{number} (in the \pkg{siunitx} internal format), % producing the result in a form suitable for typesetting in math mode. % The details for the formatting are controlled by a number of key--value % options. Note that \emph{formatting} does not apply any manipulation % (processing) to the number. This function is usable in an \texttt{e}- % or \texttt{x}-type expansion, and further uncontrolled expansion is % prevented by appropriate use of |\exp_not:n| internally. % % In the \texttt{NN} version, the \meta{marker} token is inserted at each % possible alignment position in the output, \foreign{viz.} % \begin{itemize} % \item Between the comparator and the integer (\emph{before} any % sign for the integer) % \item Between the sign and the first digit of the integer % \item Both sides of the decimal marker % \item Both sides of the separated uncertainty sign (\foreign{i.e.}~after % the decimal part and before any integer uncertainty part) % \item Both sides of the decimal marker for a separated uncertainty % \item Both sides of the multiplication symbol for the exponent part. % \end{itemize} % % The \texttt{n} and \texttt{nN} version take a token list, which should % be in the internal \pkg{siunitx} format. % \end{function} % % \begin{function}{\siunitx_number_format:nN} % \begin{syntax} % \cs{siunitx_number_format:nN} \Arg{number} \meta{tl~var} % \end{syntax} % Carries out a combination of \cs{siunitx_number_parse:nN}, % \cs{siunitx_number_process:NN} and \cs{siunitx_number_output:N} using % \texttt{x}-type expansion to place the result in the \meta{tl~var}. If % \cs{l_siunitx_number_parse_bool} if \texttt{false}, the input is simply % stored inside the \meta{tl~var} inside \cs{ensuremath}. % \end{function} % % \begin{function}[EXP] % { % \siunitx_number_adjust_exponent:Nn , % \siunitx_number_adjust_exponent:nn , % \siunitx_number_adjust_exponent:Vn % } % \begin{syntax} % \cs{siunitx_number_adjust_exponent:Nn} \meta{number} \Arg{fp~expr} % \end{syntax} % Adjusts the exponent of the \meta{number} (in internal format) by the % \meta{fp~expr} and leaves the result in the input stream. % \end{function} % % \begin{function}{\siunitx_number_normalize_symbols:N} % \begin{syntax} % \cs{siunitx_number_normalize_symbols:N} \meta{tl~var} % \end{syntax} % Replaces all multi-token signs and comparators in the \meta{tl~var} % with their single-token equivalents. Replaces any active hyphen tokens % with non-active versions. % \end{function} % % \begin{function}[pTF, EXP]{\siunitx_if_number:n} % \begin{syntax} % \cs{siunitx_if_number_token:NTF} \Arg{tokens} % \Arg{true code} \Arg{false code} % \end{syntax} % Determines if the \meta{tokens} form a valid number which can be fully % parsed by \pkg{siunitx}. % \end{function} % % \begin{function}[TF]{\siunitx_if_number_token:N} % \begin{syntax} % \cs{siunitx_if_number_token:NTF} \Arg{token} % \Arg{true code} \Arg{false code} % \end{syntax} % Determines if the \meta{token} is valid in a number based on those % tokens currently set up for detection in a number. % \end{function} % % \begin{variable}{\l_siunitx_bracket_ambiguous_bool} % A switch to control whether ambiguous numbers are bracketed: this can % also be covered in quantity formatting by a setting there. % \end{variable} % % \begin{variable}{\l_siunitx_number_parse_bool} % A switch to control whether any parsing is attempted for numbers. % \end{variable} % % \begin{variable} % { % \l_siunitx_number_comparator_tl , % \l_siunitx_number_exponent_tl , % \l_siunitx_number_sign_tl % } % The list of possible input comparators, exponent markers and signs. % \end{variable} % % \begin{variable} % {\l_siunitx_number_input_decimal_tl, \l_siunitx_number_output_decimal_tl} % The list of possible input decimal marker(s), and the output marker. % \end{variable} % % \subsection{Key--value options} % % The options defined by this submodule are available within the \pkg{l3keys} % |siunitx| tree. % % \begin{function}{allow-uncertainty-breaks} % \begin{syntax} % |allow-uncertainty-breaks| = |true|\verb"|"|false| % \end{syntax} % Specifies whether breaks are permitted for a (separated) uncertainties. The % standard setting is |true|. % \end{function} % % \begin{function}{bracket-ambiguous-numbers} % \begin{syntax} % |bracket-ambiguous-numbers| = |true|\verb"|"|false| % \end{syntax} % \end{function} % % \begin{function}{bracket-negative-numbers} % \begin{syntax} % |bracket-negative-numbers| = |true|\verb"|"|false| % \end{syntax} % \end{function} % % \begin{function}{drop-exponent} % \begin{syntax} % |drop-exponent| = |true|\verb"|"|false| % \end{syntax} % \end{function} % % \begin{function}{drop-uncertainty} % \begin{syntax} % |drop-uncertainty| = |true|\verb"|"|false| % \end{syntax} % \end{function} % % \begin{function}{drop-zero-decimal} % \begin{syntax} % |drop-zero-decimal| = |true|\verb"|"|false| % \end{syntax} % \end{function} % % \begin{function}{evaluate-expression} % \begin{syntax} % |evaluate-expression| = |true|\verb"|"|false| % \end{syntax} % \end{function} % % \begin{function}{exponent-base} % \begin{syntax} % |exponent-base| = \meta{base} % \end{syntax} % \end{function} % % \begin{function}{exponent-mode} % \begin{syntax} % |exponent-mode| = |engineering|\verb"|"|fixed|\verb"|"|input|\verb"|"|scientific|\verb"|"|threshold| % \end{syntax} % Choice which determines whether numbers are converted to exponent form. The % option |engineering| forces exponent form with an exponent which is the % smallest power of three which gives a mantissa with an integer part. The % option |fixed| uses a fixed exponent (set in |fixed-exponent|). The % option |input| leaves the input unchanged (which will therefore produce an % exponent only if the input contained one). The choice |scientific| gives % an exponent with the mantissa~$m$ in the range $1 \le m < 10$. Finally, % the option |threshold| will apply |scientific| if the exponent of input % is outside of the range stored in |exponent-thresholds|. The standard % setting is |input|. % \end{function} % % \begin{function}{exponent-product} % \begin{syntax} % |exponent-product| = \meta{symbol} % \end{syntax} % \end{function} % % \begin{function}{expression} % \begin{syntax} % |expression| = \meta{expression} % \end{syntax} % \end{function} % % \begin{function}{fixed-exponent} % \begin{syntax} % |fixed-exponent| = \meta{exponent} % \end{syntax} % \end{function} % % \begin{function} % {digit-group-size, digit-group-first-size, digit-group-other-size} % \begin{syntax} % |digit-group-number| = \meta{integer} % \end{syntax} % Sets the size of the block (the number of digits) used when grouping % digits. The option |digit-group-first-size| applies to the first grouping, % \foreign{i.e.}~immediately next to the decimal marker, while % |digit-group-other-size| applies to all other groups. Both can be set % using |digit-group-size|. The standard setting for both options is $3$. % \end{function} % % \begin{function}{group-digits} % \begin{syntax} % |group-digits| = |all|\verb"|"|decimal|\verb"|"|integer|\verb"|"|none| % \end{syntax} % Choice to specify whether digits in a number are grouped. The option |none| % entirely disables this, while |all| means that both the integer and decimal % parts are grouped. The settings |integer| and |decimal| activate grouping % for the relevant part only. The standard setting is |all|. % \end{function} % % \begin{function}{group-minimum-digits} % \begin{syntax} % |group-minimum-digits| = \meta{value} % \end{syntax} % The number of digits that must be present in a numerical part (integer or % decimal) before digit grouping is attempted. The standard setting is $4$. % \end{function} % % \begin{function}{group-separator} % \begin{syntax} % |group-separator| = \meta{symbol} % \end{syntax} % Sets the symbol inserted between groups of digits. The standard setting is % a thin space (\cs{,}). % \end{function} % % \begin{function}{input-close-uncertainty} % \begin{syntax} % |input-close-uncertainty| = \meta{tokens} % \end{syntax} % \end{function} % % \begin{function}{input-comparators} % \begin{syntax} % |input-comparators| = \meta{tokens} % \end{syntax} % \end{function} % % \begin{function}{input-close-uncertainty} % \begin{syntax} % |input-close-uncertainty| = \meta{tokens} % \end{syntax} % \end{function} % % \begin{function}{input-decimal-markers} % \begin{syntax} % |input-decimal-markers| = \meta{tokens} % \end{syntax} % \end{function} % % \begin{function}{input-digits} % \begin{syntax} % |input-digits| = \meta{tokens} % \end{syntax} % \end{function} % % \begin{function}{input-exponent-markers} % \begin{syntax} % |input-exponent-markers| = \meta{tokens} % \end{syntax} % \end{function} % % \begin{function}{input-open-uncertainty} % \begin{syntax} % |input-open-uncertainty| = \meta{tokens} % \end{syntax} % \end{function} % % \begin{function}{input-signs} % \begin{syntax} % |input-signs| = \meta{tokens} % \end{syntax} % \end{function} % % \begin{function}{input-uncertainty-signs} % \begin{syntax} % |input-uncertainty-signs| = \meta{tokens} % \end{syntax} % \end{function} % % \begin{function}{input-uncertainty-divider} % \begin{syntax} % |input-uncertainty-divider| = \meta{tokens} % \end{syntax} % \end{function} % % \begin{function}{minimum-decimal-digits} % \begin{syntax} % |minimum-decimal-digits| = \meta{min} % \end{syntax} % \end{function} % % \begin{function}{minimum-integer-digits} % \begin{syntax} % |minimum-integer-digits| = \meta{min} % \end{syntax} % \end{function} % % \begin{function}{negative-color} % \begin{syntax} % |negative-color| = \meta{color} % \end{syntax} % \end{function} % % \begin{function}{output-close-uncertainty} % \begin{syntax} % |output-close-uncertainty| = \meta{symbol} % \end{syntax} % \end{function} % % \begin{function}{output-decimal-marker} % \begin{syntax} % |output-decimal-marker| = \meta{symbol} % \end{syntax} % \end{function} % % \begin{function}{output-open-uncertainty} % \begin{syntax} % |output-open-uncertainty| = \meta{symbol} % \end{syntax} % \end{function} % % \begin{function}{parse-numbers} % \begin{syntax} % |parse-numbers| = |true|\verb"|"|false| % \end{syntax} % \end{function} % % \begin{function} % { % print-implicit-plus , % print-mantissa-implicit-plus , % print-exponent-implicit-plus % } % \begin{syntax} % |print-implicit-plus| = |true|\verb"|"|false| % |print-mantissa-implicit-plus| = |true|\verb"|"|false| % |print-exponent-implicit-plus| = |true|\verb"|"|false| % \end{syntax} % Controls whether the plus sign implicit in a positive number is printed; % this can be controlled at the level of the mantissa or exponent, or % can be activated for both. % \end{function} % % \begin{function}{print-unity-mantissa} % \begin{syntax} % |print-unity-mantissa| = |true|\verb"|"|false| % \end{syntax} % \end{function} % % \begin{function}{print-zero-exponent} % \begin{syntax} % |print-zero-exponent| = |true|\verb"|"|false| % \end{syntax} % \end{function} % % \begin{function}{print-zero-integer} % \begin{syntax} % |print-zero-integer| = |true|\verb"|"|false| % \end{syntax} % \end{function} % % \begin{function}{retain-explicit-plus} % \begin{syntax} % |retain-explicit-plus| = |true|\verb"|"|false| % \end{syntax} % Switch which determines if an explicit |+| is retained as a sign when % parsing. The standard setting is |false|. % \end{function} % % \begin{function}{retain-explicit-decimal-marker} % \begin{syntax} % |retain-explicit-decimal-marker| = |true|\verb"|"|false| % \end{syntax} % Switch which determines if an explicit decimal marker is retained when % parsing a number where there is no decimal part to a number % (\foreign{i.e.}~whether to differentiate |10| and |10.|). The standard % setting is |false|. % \end{function} % % \begin{function}{retain-negative-zero} % \begin{syntax} % |retain-negative-zero| = |true|\verb"|"|false| % \end{syntax} % Switch which determines if a negative sign is retained where the value of % a parsed number is exactly zero. The standard setting is |false|. % \end{function} % % \begin{function}{retain-zero-uncertainty} % \begin{syntax} % |retain-zero-uncertainty| = |true|\verb"|"|false| % \end{syntax} % Switch which determines if an entirely zero uncertainty part is retained % on parsing, or whether this is normalised to remove the uncertainty. % The standard setting is |false|. % \end{function} % % \begin{function}{round-direction} % \begin{syntax} % |round-direction| = |down|\verb"|"|nearest|\verb"|"|up| % \end{syntax} % Choice which determines how values values are rounded. The setting % |up| means that the value is always rounded away from zero, whereas the % setting |down| means that the value will be rounded toward zero. The % setting |nearest| means that the value will be rounded to the nearest % (either up or down), taking account of the setting of |round-half|. % The standard setting is |nearest|. % \end{function} % % \begin{function}{round-half} % \begin{syntax} % |round-half| = |even|\verb"|"|up| % \end{syntax} % Choice which determines how values of exactly half are rounded. The setting % |up| means that the value is always rounded away from zero, whereas the % setting |even| means that the value will be rounded to the closes even % number. The standard setting is |up|. % \end{function} % % \begin{function}{round-minimum} % \begin{syntax} % |round-minimum| = \meta{min} % \end{syntax} % Literal which sets a minimum value below which rounded values will be % replaced by this value and a |>| or |<|, as appropriate for the sign of % the value. The standard setting is empty, \foreign{i.e.}~there is no % minimum. % \end{function} % % \begin{function}{round-mode} % \begin{syntax} % |round-mode| = |figures|\verb"|"|none|\verb"|"|places|\verb"|"|uncertainty| % \end{syntax} % Choice which specifies the rounding approach used for numbers. The choice % |figures| means that values are rounding to the number of significant % figures specified by |round-precision|. The setting |places| rounds to % |round-precision| interpreted as a number of decimal places: this may be % negative (rounding to an integer). The setting |none| disables rounding. % The setting |uncertainty| first rounds the uncertainty to the number of % significant figures specified by |round-precision|, then rounds the main % value such that its accuracy is correctly specified by this updated % uncertainty. The standard setting is |none|. % \end{function} % % \begin{function}{round-pad} % \begin{syntax} % |round-pad| = |true|\verb"|"|false| % \end{syntax} % Switch which specifies if values should be padded to the required number % length when rounding to a number of decimal places. The standard setting is % |true|. % \end{function} % % \begin{function}{round-precision} % \begin{syntax} % |round-precision| = \meta{precision} % \end{syntax} % Integer specifying the number of digits used as a target when rounding: % this may be interpreted as decimal places or significant figures, % depending on active |round-mode|. The standard setting is $2$. % \end{function} % % \begin{function}{round-zero-positive} % \begin{syntax} % |round-zero-positive| = |true|\verb"|"|false| % \end{syntax} % Switch to control whether a value rounded to zero is regarded as a positive % number if the input was negative. The standard setting is |true|. % \end{function} % % \begin{function}{simplify-uncertainty} % \begin{syntax} % |simplify-uncertainty| = |true|\verb"|"|false| % \end{syntax} % Switch to control whether uncertainties given with two equal components % are printed as a single value. % \end{function} % % \begin{function}{tight-spacing} % \begin{syntax} % |tight-spacing| = |true|\verb"|"|false| % \end{syntax} % \end{function} % % \begin{function}{uncertainty-descriptor-mode} % \begin{syntax} % |uncertainty-descriptor| = |bracket|\verb"|"|bracket-separator|\verb"|"|separator|\verb"|"|subscript| % \end{syntax} % Selects how uncertainty descriptors are formatted: a choice from the % options |bracket|, |text| and |subscript|. The option |bracket| wraps the % descriptor in parenthesis, |bracket-separator| does the same but also % includes a separator between the uncertainty and opening bracket, % |separator| places the descriptor after the uncertainty and a separator, % and |subscript| formats the descriptor as a subscript. The % standard setting is |bracket-separator|. % \end{function} % % \begin{function}{uncertainty-descriptor-separator} % \begin{syntax} % |uncertainty-descriptor-separator| = \meta{separator} % \end{syntax} % Separateor inserted between the uncertainty and descriptor when one is % required by |uncertainty-separator-mode|. The standard setting is % \verb*|\ |. % \end{function} % % \begin{function}{uncertainty-descriptors} % \begin{syntax} % |uncertainty-descriptors| = \meta{clist} % \end{syntax} % Stores the list of descriptors used when there are multiple uncertainty % components given. This is not used when there is only a single uncertainty % component present. The standard setting is |empty|. % \end{function} % % \begin{function}{uncertainty-mode} % \begin{syntax} % |uncertainty-mode| = |compact|\verb"|"|compact-marker|\verb"|"|full|\verb"|"|separate| % \end{syntax} % Switch to determine how single symmetrical uncertainties are formatted. % When this is set to |separate|, the uncertainty is printed as an entirely % separate number preceded by \cs{pm}. Other settings all place the % uncertainty in parentheses directly attached to the main value. The % standard setting of |compact| prints digits of uncertainty in the % least-significant digits. It does \emph{not} print a decimal marker if the % uncertainty crosses the decimal. The setting |full| prints the full value % of the uncertainty. The setting |compact-marker| is available to print in the % |compact| style except where the uncertainty crosses the decimal, in which case the % |full| style is used. The standard setting is |compact|. % \end{function} % % \begin{function}{uncertainty-round-direction} % \begin{syntax} % |uncertainty-round-direction| = |down|\verb"|"|nearest|\verb"|"|up| % \end{syntax} % Choice which determines how uncertainty values are rounded. The setting % |up| means that the uncertainty is always rounded away from zero, whereas % the setting |down| means that the uncertainty will be rounded toward zero. % The setting |nearest| means that the uncertainty will be rounded to the % nearest (either up or down), taking account of the setting of |round-half|. % The standard setting is |nearest|. % \end{function} % % \begin{function}{uncertainty-separator} % \begin{syntax} % |uncertainty-separator| = \meta{separator} % \end{syntax} % Stores the separator used between the main value and uncertainty when using % the |compact| or |compact-marker| style setting for |uncertainty-mode|. % \end{function} % % \begin{function}{zero-decimal-as-symbol} % \begin{syntax} % |zero-decimal-as-symbol| = |true|\verb"|"|false| % \end{syntax} % Switch to determine if an entirely zero decimal part is replaced by a % symbol. Does not apply if the decimal part is marked as entirely absent. % \end{function} % % \begin{function}{zero-symbol} % \begin{syntax} % |zero-symbol| = \meta{symbol} % \end{syntax} % Material printed when a zero numerical component is replaced by a symbol. % \end{function} % % \end{documentation} % % \begin{implementation} % % \section{\pkg{siunitx-number} implementation} % % Start the \pkg{DocStrip} guards. % \begin{macrocode} %<*package> % \end{macrocode} % % Identify the internal prefix. % \begin{macrocode} %<@@=siunitx_number> % \end{macrocode} % % \subsection{Initial set-up} % % Variants not provided by \pkg{expl3}. % \begin{macrocode} \cs_generate_variant:Nn \keys_set:nn { nx } \cs_generate_variant:Nn \tl_if_blank:nTF { e } \cs_generate_variant:Nn \tl_if_in:NnTF { NV } \cs_generate_variant:Nn \tl_if_in:nnTF { nV } \cs_generate_variant:Nn \tl_remove_all:Nn { NV } \cs_generate_variant:Nn \tl_replace_all:Nnn { NnV } % \end{macrocode} % % \begin{variable}{\l_@@_tmp_tl} % Scratch space. % \begin{macrocode} \tl_new:N \l_@@_tmp_tl % \end{macrocode} % \end{variable} % % \subsection{Main formatting routine} % % \begin{variable}{\l_@@_outputted_tl} % A token list for the final formatted result: may or may not be generated % by the parser, depending on settings which are active. % \begin{macrocode} \tl_new:N \l_@@_outputted_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_siunitx_number_parse_bool} % Tracks whether to parse numbers: public as this may affect other % behaviors. % \begin{macrocode} \tl_new:N \l_siunitx_number_parse_bool % \end{macrocode} % \end{variable} % % \begin{variable}{\l_siunitx_number_parse_bool} % Top-level options. % \begin{macrocode} \keys_define:nn { siunitx } { parse-numbers .bool_set:N = \l_siunitx_number_parse_bool } % \end{macrocode} % \end{variable} % % \begin{macro}{\siunitx_number_format:nN} % \begin{macrocode} \cs_new_protected:Npn \siunitx_number_format:nN #1#2 { \group_begin: \bool_if:NTF \l_siunitx_number_parse_bool { \siunitx_number_parse:nN {#1} \l_@@_parsed_tl \tl_if_empty:NF \l_@@_parsed_tl { \siunitx_number_process:NN \l_@@_parsed_tl \l_@@_parsed_tl \tl_set:Nx \l_@@_outputted_tl { \siunitx_number_output:N \l_@@_parsed_tl } } } { \tl_set:Nn \l_@@_outputted_tl { \ensuremath {#1} } } \exp_args:NNNV \group_end: \tl_set:Nn #2 \l_@@_outputted_tl } % \end{macrocode} % \end{macro} % % \subsection{Parsing numbers} % % Before numbers can be manipulated or formatted they need to be parsed into % an internal form. In particular, if multiple code paths are to be avoided, % it is necessary to do such parsing even for relatively simple cases such % as converting |1e10| to |1 \times 10^{10}|. % % Storing the result of such parsing can be done in a number of ways. In the % first version of \pkg{siunitx} a series of separate data stores were used. % This is potentially quite fast (as recovery of items relies only on \TeX{}'s % hash table) but makes managing the various data entries somewhat tedious and % error-prone. For version two of the package, a single data structure % (property list) was used for each part of the parsed number. Whilst this is % easy to manage and extend, it is somewhat slower as at a \TeX{} level there % are repeated pack--unpack steps. In particular, the fact that there are a % limited number of items to track for a \enquote{number} means that a more % efficient approach is desirable (contrast parsing units, which is open-ended % and therefore fits well with using a property list). % % In this release, the structure of a valid number is: % \begin{quote} % \marg{comparator}\meta{sign}\marg{integer}\marg{decimal} % \marg{uncertainty}\\ % \meta{exponent sign}\marg{exponent} % \end{quote} % where all components must be given in braces. \emph{All} of the components % must be present in a stored number (\foreign{i.e.}~at the end of parsing). % % A non-empty \meta{uncertainty} must contain one leading brace group % containing an identifier, then zero or more brace groups which contain % the uncertainty data. In this release, the known uncertainty types are % \begin{itemize} % \item \texttt{A}: An unsymmetrical uncertainty made up of two values. % Each is stored as uncertainty in significant digits, with no radix point % in the stored value. The two parts are stored within one brace group, % within which are two brace groups: the first contains the positive % component, the second the negative component. Neither component has a % sign. % \item \texttt{S}: A symmetrical statistical uncertainty made up of % a single value. These are stored as uncertainty in significant digits, % with no radix point in the stored value. % \end{itemize} % % \begin{variable}{\l_siunitx_number_input_decimal_tl} % The input decimal markers(s). % \begin{macrocode} \tl_new:N \l_siunitx_number_input_decimal_tl % \end{macrocode} % \end{variable} % % \begin{variable} % { % \l_@@_expression_bool , % \l_@@_input_uncert_close_tl , % \l_siunitx_number_input_comparator_tl , % \l_@@_input_digit_tl , % \l_siunitx_number_input_exponent_tl , % \l_@@_input_ignore_tl , % \l_@@_input_uncert_open_tl , % \l_@@_input_uncert_divide_tl , % \l_siunitx_number_input_sign_tl , % \l_@@_input_uncert_sign_tl , % \l_@@_explicit_decimal_bool , % \l_@@_explicit_plus_bool , % \l_@@_negative_zero_bool , % \l_@@_zero_uncert_bool % } % \begin{macro}[EXP]{\@@_expression:n} % Options which determine the various valid parts of a parsed number. % \begin{macrocode} \keys_define:nn { siunitx } { evaluate-expression .bool_set:N = \l_@@_expression_bool , expression .code:n = \cs_set:Npn \@@_expression:n ##1 {#1} , input-close-uncertainty .tl_set:N = \l_@@_input_uncert_close_tl , input-comparators .tl_set:N = \l_siunitx_number_input_comparator_tl , input-decimal-markers .tl_set:N = \l_siunitx_number_input_decimal_tl , input-digits .tl_set:N = \l_@@_input_digit_tl , input-exponent-markers .tl_set:N = \l_siunitx_number_input_exponent_tl , input-ignore .tl_set:N = \l_@@_input_ignore_tl , input-open-uncertainty .tl_set:N = \l_@@_input_uncert_open_tl , input-signs .tl_set:N = \l_siunitx_number_input_sign_tl , input-uncertainty-signs .code:n = { \tl_set:Nn \l_@@_input_uncert_sign_tl {#1} \tl_map_inline:nn {#1} { \tl_if_in:NnF \l_siunitx_number_input_sign_tl {##1} { \tl_put_right:Nn \l_siunitx_number_input_sign_tl {##1} } } } , input-uncertainty-divider .tl_set:N = \l_@@_input_uncert_divide_tl , parse-numbers .bool_set:N = \l_siunitx_number_parse_bool , retain-explicit-decimal-marker .bool_set:N = \l_@@_explicit_decimal_bool , retain-explicit-plus .bool_set:N = \l_@@_explicit_plus_bool , retain-negative-zero .bool_set:N = \l_@@_negative_zero_bool , retain-zero-uncertainty .bool_set:N = \l_@@_zero_uncert_bool } \cs_new:Npn \@@_expression:n #1 { } \tl_new:N \l_@@_input_uncert_sign_tl % \end{macrocode} % \end{macro} % \end{variable} % % \begin{variable}{\l_@@_arg_tl} % The input argument or a part thereof, depending on the position in % the parsing routine. % \begin{macrocode} \tl_new:N \l_@@_arg_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_comparator_tl} % A comparator, if found, is held here. % \begin{macrocode} \tl_new:N \l_@@_comparator_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_exponent_tl} % The exponent part of a parsed number. It is easiest to find this % relatively early in the parsing process, but as it needs to go at % the end of the internal format is held separately until required. % \begin{macrocode} \tl_new:N \l_@@_exponent_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_flex_tl} % In a number with an uncertainty, the exact meaning of a second part is % not fully resolved until parsing is complete. That is handled using % this \enquote{flexible} store. % \begin{macrocode} \tl_new:N \l_@@_flex_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_parsed_tl} % The number parsed into internal format. % \begin{macrocode} \tl_new:N \l_@@_parsed_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_input_tl} % The numerical input exactly as given by the user. % \begin{macrocode} \tl_new:N \l_@@_input_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_partial_tl} % To avoid needing to worry about the fact that the final data stores are % somewhat tricky to add to token-by-token, a simple store is used to build % up the parsed part of a number before transferring in one go. % \begin{macrocode} \tl_new:N \l_@@_partial_tl % \end{macrocode} % \end{variable} % % \begin{variable} % { % \l_@@_tolerance_tl , % \l_@@_uncert_tl , % \l_@@_uncert_offset_int, % \l_@@_uncert_types_tl % } % To allow multiple uncertainties, we want to build this up as possibly % multiple entries. For asymmetrical uncertainties/tolerances, we need % an additional store. % \begin{macrocode} \tl_new:N \l_@@_tolerance_tl \tl_new:N \l_@@_uncert_tl \int_new:N \l_@@_uncert_offset_int \tl_new:N \l_@@_uncert_types_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_validate_bool} % Used to set up for validation with no error production. % \begin{macrocode} \bool_new:N \l_@@_validate_bool % \end{macrocode} % \end{variable} % % \begin{macro}{\siunitx_number_normalize_symbols:N} % \begin{macro}{\@@_normalize_aux:nN} % \begin{macro}{\@@_normalize_actives:N} % \begin{variable}{\c_@@_normalize_tl} % There are two parts to the replacement code. First, any actives % are normalised: these can come up with some packages and % cause issues. Multi-token signs then are converted to the single token % equivalents so that everything else can work on a one token basis. % \begin{macrocode} \cs_new_protected:Npn \siunitx_number_normalize_symbols:N #1 { \@@_normalize_actives:N #1 \exp_after:wN \@@_normalize_aux:NnN \exp_after:wN #1 \c_@@_normalize_tl { ? } \q_recursion_tail \q_recursion_stop } \cs_set_protected:Npn \@@_normalize_aux:NnN #1#2#3 { \quark_if_recursion_tail_stop:N #3 \tl_replace_all:Nnn #1 {#2} {#3} \@@_normalize_aux:NnN #1 } \group_begin: \char_set_catcode_other:N \~ \tl_const:Nn \c_@@_normalize_tl { { -+ } \mp { +- } \pm { << } \ll { <= } \le { >> } \gg { >= } \ge { ~ } \sim } \group_end: \group_begin: \char_set_catcode_active:N \- \char_set_catcode_active:N \< \char_set_catcode_active:N \> \char_set_catcode_active:N \~ \cs_new_protected:Npx \@@_normalize_actives:N #1 { \tl_replace_all:Nnn #1 { \exp_not:N - } { \token_to_str:N - } \tl_replace_all:Nnn #1 { \exp_not:N < } { \token_to_str:N < } \tl_replace_all:Nnn #1 { \exp_not:N > } { \token_to_str:N > } \tl_replace_all:Nnn #1 { \exp_not:N ~ } { \token_to_str:N ~ } } \group_end: % \end{macrocode} % \end{variable} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\siunitx_number_parse:nN, \siunitx_number_parse:VN} % \begin{macro}{\@@_parse:nN} % After some initial set up, the parser expands the input and then replaces % as far as possible tricky tokens with ones that can be handled using % delimited arguments. To avoid multiple conditionals here, the parser is % set up as a chain of commands initially, with a loop only later. This % avoids more conditionals than are necessary. % \begin{macrocode} \cs_new_protected:Npn \siunitx_number_parse:nN #1#2 { \bool_if:NTF \l_siunitx_number_parse_bool { \@@_parse:nN {#1} #2 } { \tl_clear:N #2 } } \cs_generate_variant:Nn \siunitx_number_parse:nN { V } \cs_new_protected:Npn \@@_parse:nN #1#2 { \group_begin: \tl_clear:N \l_@@_parsed_tl \tl_clear:N \l_@@_uncert_tl \tl_clear:N \l_@@_uncert_types_tl \tl_map_inline:Nn \l_@@_input_ignore_tl { \token_if_macro:NT ##1 { \cs_set_eq:NN ##1 \scan_stop: } } \protected@edef \l_@@_arg_tl { \bool_if:NTF \l_@@_expression_bool { \fp_eval:n { \@@_expression:n {#1} } } {#1} } \tl_set_eq:NN \l_@@_input_tl \l_@@_arg_tl \siunitx_number_normalize_symbols:N \l_@@_arg_tl \tl_map_inline:Nn \l_@@_input_ignore_tl { \tl_remove_all:Nn \l_@@_arg_tl {##1} } \protected@edef \l_@@_input_digit_tl { \l_@@_input_digit_tl } \tl_if_empty:NF \l_@@_arg_tl { \@@_parse_comparator: \@@_parse_check: } \exp_args:NNNV \group_end: \tl_set:Nn #2 \l_@@_parsed_tl } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_parse_check:} % After the loop there is one case that might need tidying up. If a % separated uncertainty was found it will be currently in \cs{l_@@_flex_tl} % and needs moving. A series of tests pick up that case, then the check is % made that some content was found % \begin{macrocode} \cs_new_protected:Npn \@@_parse_check: { \tl_put_right:NV \l_@@_uncert_tl \l_@@_flex_tl \tl_if_empty:NF \l_@@_uncert_tl { \tl_if_blank:eTF { \exp_after:wN \use_iv:nnnn \l_@@_parsed_tl } { \@@_parse_combine_uncert: } { \tl_clear:N \l_@@_parsed_tl } } \tl_if_empty:NTF \l_@@_parsed_tl { \bool_if:NF \l_@@_validate_bool { \msg_error:nnx { siunitx } { invalid-number } { \exp_not:V \l_@@_input_tl } } } { \@@_parse_finalise: } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_parse_combine_uncert:} % \begin{macro}[EXP]{\@@_parse_combine_uncert:nnnn} % \begin{macro}[EXP]{\@@_parse_combine_uncert:nn} % \begin{macro}[EXP] % { % \@@_parse_combine_uncert_loop:nnnnnnn , % \@@_parse_combine_uncert_loop:nnnnnnn % } % \begin{macro}[EXP] % {\@@_parse_combine_uncert:nnnnnn, \@@_parse_combine_uncert:ennnnn} % \begin{macro}[EXP]{\@@_parse_combine_uncert_aux:nn} % \begin{macro}[EXP] % {\@@_parse_combine_uncert:nnnnnnn, \@@_parse_combine_uncert:ennnnnn} % \begin{macro}[EXP] % {\@@_parse_combine_uncert:nnnnn, \@@_parse_combine_uncert:nnenn} % \begin{macro}[EXP] % { % \@@_parse_combine_uncert_aux:nnnn , % \@@_parse_combine_uncert_aux:eenn % } % \begin{macro}[EXP]{\@@_parse_combine_uncert:N} % \begin{macro}[EXP]{\@@_parse_combine_uncert:w} % \begin{macro}[EXP]{\@@_parse_combine_uncert_end:nnn} % \begin{macro}[EXP]{\@@_parse_combine_uncert_end:nnnn} % Conversion of a second numerical part to an uncertainty needs a bit of % work. The first step is to extract the useful information from the two % stores: the sign, integer and decimal parts from the real number. Then % set up a loop to deal with each uncertainty to combine. Everything is done % by expansion to avoid repeated assignments. To allow for the case where % there is an error, the setup doesn't insert any tokens until the end of % the loop, which means a bit of work on the stack. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_combine_uncert: { \tl_set:Nx \l_@@_parsed_tl { \exp_after:wN \@@_parse_combine_uncert:nnnn \l_@@_parsed_tl } } % \end{macrocode} % Here, |#1| and |#2| are not required at this stage, while |#4| is junk. % Thus |#3| is the only item needed for the rest of the process. After a % little argument shuffling, the main loop can begin. % \begin{macrocode} \cs_new:Npn \@@_parse_combine_uncert:nnnn #1#2#3#4 { \exp_after:wN \@@_parse_combine_uncert:nn \exp_after:wN { \l_@@_uncert_tl } {#3} } \cs_new:Npn \@@_parse_combine_uncert:nn #1#2 { \@@_parse_combine_uncert_loop:nnnnnnn {#2} { } { } #1 { \q_recursion_tail } { } { } { } \q_recursion_stop } % \end{macrocode} % Here, |#4| and |#7| are junk arguments simply there to mop up % tokens, with the exception that |#4| is also used for the end-of-loop % test. % \begin{macrocode} \cs_new:Npn \@@_parse_combine_uncert_loop:nnnnnnn #1#2#3#4#5#6#7 { \quark_if_recursion_tail_stop_do:nn {#4} { \@@_parse_combine_uncert_end:nnn {#1} {#2} {#3} } \@@_parse_combine_uncert:ennnnn { \int_eval:n { \tl_count:n {#1} - \tl_count:n {#6} } } {#1} {#2} {#3} {#5} {#6} } \cs_generate_variant:Nn \@@_parse_combine_uncert_loop:nnnnnnn { nee } % \end{macrocode} % The difference in places between the two decimal parts is now found: this % is done just once to avoid having to parse token lists twice. The value % is then used to generate a number of filler |0| tokens, and these are added % to the appropriate part of the number. % \begin{macrocode} \cs_new:Npn \@@_parse_combine_uncert:nnnnnn #1 { \@@_parse_combine_uncert:ennnnnn { \prg_replicate:nn { \int_abs:n {#1} } { 0 } } {#1} } \cs_generate_variant:Nn \@@_parse_combine_uncert:nnnnnn { e } \cs_new:Npn \@@_parse_combine_uncert:nnnnnnn #1#2#3#4#5#6#7 { \int_compare:nNnTF {#2} > 0 { \@@_parse_combine_uncert:nnnnn {#3} {#4} {#5} {#6} { #7 #1 } } { \@@_parse_combine_uncert:nnenn { #3 #1 } {#4} { \tl_map_tokens:nn {#5} { \@@_parse_combine_uncert_aux:nn {#1} } } {#6} {#7} } } \cs_generate_variant:Nn \@@_parse_combine_uncert:nnnnnnn { e } \cs_new:Npn \@@_parse_combine_uncert_aux:nn #1#2 { {#2#1} } % \end{macrocode} % We now ensure that the decimal part is never entirely blank \emph{if} there % are decimal-part uncertainty digits. There is also a need to handle the % possibly of an entirely empty uncertainty, where the value is zero and that % is not being retained. % \begin{macrocode} \cs_new:Npn \@@_parse_combine_uncert:nnnnn #1#2#3#4#5 { \@@_parse_combine_uncert_aux:eenn { \bool_lazy_and:nnTF { \tl_if_blank_p:n {#1} } { ! \tl_if_blank_p:n {#5} } { 0 } { \exp_not:n {#1} } } { \@@_parse_combine_uncert:N #4#5 \q_recursion_tail \q_recursion_stop } {#2} {#3} } \cs_generate_variant:Nn \@@_parse_combine_uncert:nnnnn { nne } \cs_new:Npn \@@_parse_combine_uncert_aux:nnnn #1#2#3#4 { \@@_parse_combine_uncert_loop:neennnn {#1} { \exp_not:n {#3} \tl_if_blank:nF {#2} { S } } { \exp_not:n {#4} \tl_if_blank:nF {#2} { { \exp_not:n {#2} } } } } \cs_generate_variant:Nn \@@_parse_combine_uncert_aux:nnnn { ee } % \end{macrocode} % A short routine to remove any leading zeros in the uncertainty part, % which are not needed for the compact representation used by the module. % \begin{macrocode} \cs_new:Npn \@@_parse_combine_uncert:N #1 { \quark_if_recursion_tail_stop_do:Nn #1 { \bool_if:NT \l_@@_zero_uncert_bool { 0 } } \str_if_eq:nnTF {#1} { 0 } { \@@_parse_combine_uncert:N } { \@@_parse_combine_uncert:w #1 } } \cs_new:Npn \@@_parse_combine_uncert:w #1 \q_recursion_tail \q_recursion_stop { \exp_not:n {#1} } % \end{macrocode} % Recover the sign and integer part, then add in the new decimal and the % uncertainties. % \begin{macrocode} \cs_new:Npn \@@_parse_combine_uncert_end:nnn #1#2#3 { \exp_after:wN \@@_parse_combine_uncert_end:nnnn \l_@@_parsed_tl { \exp_not:n {#1} } { \tl_if_blank:nF {#2} { \exp_not:n { {#2} #3 } } } } \cs_new:Npn \@@_parse_combine_uncert_end:nnnn #1#2#3#4 { \exp_not:n { {#1} {#2} } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_parse_comparator:} % \begin{macro}{\@@_parse_comparator_aux:Nw} % A comparator has to be the very first token in the input. A such, the % test for this can be very fast: grab the first token, do a check and % if appropriate store the result. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_comparator: { \exp_after:wN \@@_parse_comparator_aux:Nw \l_@@_arg_tl \q_stop } \cs_new_protected:Npn \@@_parse_comparator_aux:Nw #1#2 \q_stop { \tl_if_in:NnTF \l_siunitx_number_input_comparator_tl {#1} { \tl_set:Nn \l_@@_comparator_tl {#1} \tl_set:Nn \l_@@_arg_tl {#2} } { \tl_clear:N \l_@@_comparator_tl } \tl_if_empty:NF \l_@@_arg_tl { \@@_parse_sign: } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_parse_exponent:} % \begin{macro}{\@@_parse_exponent_auxi:w} % \begin{macro}{\@@_parse_exponent_auxii:nn} % \begin{macro}{\@@_parse_exponent_auxiii:Nw} % \begin{macro}{\@@_parse_exponent_auxiv:nn} % \begin{macro} % {\@@_parse_exponent_zero_test:N, \@@_parse_exponent_check:N} % \begin{macro}{\@@_parse_exponent_cleanup:N} % An exponent part of a number has to come at the end and can only occur % once. Thus it is relatively easy to parse. First, there is a check that % an exponent part is allowed, and if so a split is made (the previous % part of the chain checks that there is some content in \cs{l_@@_arg_tl} % before calling this function). After splitting, if there is no exponent % then simply save a default. Otherwise, check for a sign and then store % either this or an implicit plus, and the digits after a check that nothing % else is present after the~|e|. The only slight complication to all of % this is allowing an arbitrary token in the input to represent the exponent: % this is done by setting any exponent tokens to the first of the allowed % list, then using that in a delimited argument set up. Once an exponent % part is found, there is a loop to check that each of the tokens is a digit % then a tidy up step to remove any leading zeros. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_exponent: { \tl_if_empty:NTF \l_siunitx_number_input_exponent_tl { \tl_set:Nn \l_@@_exponent_tl { { } { } } \tl_if_empty:NF \l_@@_parsed_tl { \@@_parse_loop: } } { \tl_set:Nx \l_@@_tmp_tl { \tl_head:V \l_siunitx_number_input_exponent_tl } \tl_map_inline:Nn \l_siunitx_number_input_exponent_tl { \tl_replace_all:NnV \l_@@_arg_tl {##1} \l_@@_tmp_tl } \use:x { \cs_set_protected:Npn \exp_not:N \@@_parse_exponent_auxi:w ####1 \exp_not:V \l_@@_tmp_tl ####2 \exp_not:V \l_@@_tmp_tl ####3 \exp_not:N \q_stop } { \@@_parse_exponent_auxii:nn {##1} {##2} } \use:x { \@@_parse_exponent_auxi:w \exp_not:V \l_@@_arg_tl \exp_not:V \l_@@_tmp_tl \exp_not:N \q_nil \exp_not:V \l_@@_tmp_tl \exp_not:N \q_stop } } } \cs_new_protected:Npn \@@_parse_exponent_auxi:w { } \cs_new_protected:Npn \@@_parse_exponent_auxii:nn #1#2 { \quark_if_nil:nTF {#2} { \tl_set:Nn \l_@@_exponent_tl { { } { } } } { \tl_set:Nn \l_@@_arg_tl {#1} \tl_if_blank:nTF {#2} { \tl_clear:N \l_@@_parsed_tl } { \@@_parse_exponent_auxiii:Nw #2 \q_stop } } \tl_if_empty:NF \l_@@_parsed_tl { \@@_parse_loop: } } \cs_new_protected:Npn \@@_parse_exponent_auxiii:Nw #1#2 \q_stop { \tl_if_in:NnTF \l_siunitx_number_input_sign_tl {#1} { \@@_parse_exponent_auxiv:nn {#1} {#2} } { \@@_parse_exponent_auxiv:nn { } {#1#2} } \tl_if_empty:NT \l_@@_exponent_tl { \tl_clear:N \l_@@_parsed_tl } } \cs_new_protected:Npn \@@_parse_exponent_auxiv:nn #1#2 { \bool_lazy_or:nnTF { \l_@@_explicit_plus_bool } { ! \str_if_eq_p:nn {#1} { + } } { \tl_set:Nn \l_@@_exponent_tl { {#1} } } { \tl_set:Nn \l_@@_exponent_tl { { } } } \tl_if_blank:nTF {#2} { \tl_clear:N \l_@@_parsed_tl } { \@@_parse_exponent_zero_test:N #2 \q_recursion_tail \q_recursion_stop } } \cs_new_protected:Npn \@@_parse_exponent_zero_test:N #1 { \quark_if_recursion_tail_stop_do:Nn #1 { \tl_set:Nn \l_@@_exponent_tl { { } 0 } } \str_if_eq:nnTF {#1} { 0 } { \@@_parse_exponent_zero_test:N } { \@@_parse_exponent_check:N #1 } } \cs_new_protected:Npn \@@_parse_exponent_check:N #1 { \quark_if_recursion_tail_stop:N #1 \tl_if_in:NnTF \l_@@_input_digit_tl {#1} { \tl_put_right:Nn \l_@@_exponent_tl {#1} \@@_parse_exponent_check:N } { \@@_parse_exponent_cleanup:wN } } \cs_new_protected:Npn \@@_parse_exponent_cleanup:wN #1 \q_recursion_stop { \tl_clear:N \l_@@_parsed_tl } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_parse_finalise:} % \begin{macro}[EXP]{\@@_parse_finalise:nnnn} % \begin{macro}[EXP]{\@@_parse_finalise:nw} % Combine all of the bits of a number together, dealing with negative zero % if required. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_finalise: { \tl_if_empty:NF \l_@@_parsed_tl { \tl_set:Nx \l_@@_parsed_tl { { \exp_not:V \l_@@_comparator_tl } \exp_after:wN \@@_parse_finalise:nnnn \l_@@_parsed_tl \exp_after:wN \@@_parse_finalise:nw \l_@@_exponent_tl \q_stop } } } \cs_new:Npn \@@_parse_finalise:nnnn #1#2#3#4 { \bool_lazy_all:nTF { { ! \l_@@_negative_zero_bool } { \str_if_eq_p:nn {#1} { - } } { ! \tl_if_blank_p:n {#2#3} } { \str_if_eq_p:ee { \exp_not:n {#2#3} } { \prg_replicate:nn { \tl_count:n {#2#3} } { 0 } } } } { \exp_not:n { { } {#2} {#3} {#4} } } { \exp_not:n { {#1} {#2} {#3} {#4} } } } \cs_new:Npn \@@_parse_finalise:nw #1#2 \q_stop { { \exp_not:n {#1} } { \exp_not:n {#2} } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_parse_loop:} % \begin{macro}{\@@_parse_loop_first:NNN} % \begin{macro}{\@@_parse_loop_main:NNNN} % \begin{macro}{\@@_parse_loop_main_end:NN} % \begin{macro}{\@@_parse_loop_main_digit:NNNN} % \begin{macro}{\@@_parse_loop_main_decimal:N} % \begin{macro}{\@@_parse_loop_main_uncert:NN} % \begin{macro}{\@@_parse_loop_main_sign:NNN} % \begin{macro}{\@@_parse_loop_main_store:NNN} % \begin{macro}{\@@_parse_loop_after_decimal:NN} % \begin{macro}{\@@_parse_loop_break:w} % At this stage, the partial input \cs{l_@@_arg_tl} will contain any % mantissa, which may contain one or more uncertainties. Parsing this % and allowing for all of the different formats possible is best done using % a token-by-token approach. However, as at each stage only a subset of % tokens are valid, the approach take is to use a set of semi-dedicated % functions to parse different components along with switches to allow a % sensible amount of code sharing. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_loop: { \tl_clear:N \l_@@_partial_tl \exp_after:wN \@@_parse_loop_first:NNN \exp_after:wN \l_@@_parsed_tl \exp_after:wN \c_true_bool \l_@@_arg_tl \q_recursion_tail \q_recursion_stop } % \end{macrocode} % The very first token of the input is handled with a dedicated function. % Valid cases here are % \begin{itemize} % \item Entirely blank if the original input was for example |+e10|: % simply clean up if in the integer part or issue an error if in % a second part (uncertainty). % \item An integer part digit: pass through to the main collection % routine. % \item A decimal marker: store an empty integer part and move to % the main collection routine for a decimal part. % \end{itemize} % Anything else is invalid and sends the code to the abort function. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_loop_first:NNN #1#2#3 { \quark_if_recursion_tail_stop_do:Nn #3 { \bool_if:NTF #2 { \tl_put_right:Nn #1 { { } { } { } } } { \@@_parse_loop_break:w \q_recursion_stop } } \tl_if_in:NnTF \l_@@_input_digit_tl {#3} { \@@_parse_loop_main:NNNN #1 \c_true_bool \c_false_bool #3 } { \tl_if_in:NnTF \l_siunitx_number_input_decimal_tl {#3} { \tl_put_right:Nn #1 { { 0 } } \@@_parse_loop_after_decimal:NN #1 } { \@@_parse_loop_break:w } } } % \end{macrocode} % A single function is used to cover the \enquote{main} part of numbers: % finding the main or separated uncertainty parts and covering both % the integer and decimal components. This works because these elements % share a lot of concepts: a small number of switches can be used to % differentiate between them. To keep the code at least somewhat readable, % this main function deals with the validity testing but hands off other % tasks to dedicated auxiliaries for each case. % % The possibilities are % \begin{itemize} % \item The number terminates, meaning that some digits were collected % and everything is simply tidied up (as far as the loop is concerned). % \item A digit is found: this is the common case and leads to a storage % auxiliary (which handles non-significant zeros). % \item A decimal marker is found: only valid in the integer part and % there leading to a store-and-switch situation. % \item An open-uncertainty token: switch to the dedicated collector % for uncertainties. % \item A sign token: stop collecting this number and % restart collection for the next part. % \end{itemize} % \begin{macrocode} \cs_new_protected:Npn \@@_parse_loop_main:NNNN #1#2#3#4 { \quark_if_recursion_tail_stop_do:Nn #4 { \@@_parse_loop_main_end:NN #1#2 } \tl_if_in:NnTF \l_@@_input_digit_tl {#4} { \@@_parse_loop_main_digit:NNNN #1#2#3#4 } { \tl_if_in:NnTF \l_siunitx_number_input_decimal_tl {#4} { \bool_if:NTF #2 { \@@_parse_loop_main_decimal:N #1 } { \@@_parse_loop_break:w } } { \tl_if_in:NnTF \l_@@_input_uncert_open_tl {#4} { \@@_parse_loop_main_uncert:NN #1 #2 } { \tl_if_in:NnTF \l_@@_input_uncert_sign_tl {#4} { \@@_parse_loop_main_sign:NNN #1 #2 #4 } { \@@_parse_loop_break:w } } } } } % \end{macrocode} % If the main loop finds the end marker then there is a tidy up phase. % The current partial number is stored either as the integer or decimal, % depending on the setting for the indicator switch. For the integer % part, if no number has been collected then one or more non-significant % zeros have been dropped. Exactly one zero is therefore needed to make % sure the parsed result is correct. On the other hand, if the decimal % is empty \emph{and} we are asked to track the presence of a marker, % we store the indicator value \cs{empty}. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_loop_main_end:NN #1#2 { \tl_if_empty:NT \l_@@_partial_tl { \bool_if:NTF #2 { \tl_set:Nn \l_@@_partial_tl { 0 } } { \bool_if:NT \l_@@_explicit_decimal_bool { \tl_set:Nn \l_@@_partial_tl { \empty } } } } \tl_put_right:Nx #1 { { \exp_not:V \l_@@_partial_tl } \bool_if:NT #2 { { } } { } } } % \end{macrocode} % The most common case for the main loop collector is to find a digit. % Here, in the integer part it is possible that zeros are non-significant: % that is handled using a combination of a switch and a string test. Other % than that, the situation here is simple: store the input and loop. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_loop_main_digit:NNNN #1#2#3#4 { \bool_lazy_or:nnTF {#3} { ! \str_if_eq_p:nn {#4} { 0 } } { \tl_put_right:Nn \l_@@_partial_tl {#4} \@@_parse_loop_main:NNNN #1 #2 \c_true_bool } { \@@_parse_loop_main:NNNN #1 #2 \c_false_bool } } % \end{macrocode} % When a decimal marker was found, move the integer part to the % store and then go back to the loop with the flags set correctly. % There is the case of non-significant zeros to cover before that, of course. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_loop_main_decimal:N #1 { \@@_parse_loop_main_store:NNN #1 \c_false_bool \c_false_bool \@@_parse_loop_after_decimal:NN #1 } % \end{macrocode} % Starting an uncertainty part means storing the number to date as in other % cases, with the possibility of a blank decimal part allowed for. The % uncertainty itself is collected by a dedicated function as it is extremely % restricted. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_loop_main_uncert:NN #1#2 { \@@_parse_loop_main_store:NNN #1 #2 \c_false_bool \@@_parse_uncert:N } % \end{macrocode} % If a sign is found, terminate the current number, store the sign as the % first token of the second part and go back to do the dedicated first-token % function. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_loop_main_sign:NNN #1#2#3 { \@@_parse_loop_main_store:NNN #1 #2 \c_true_bool \tl_put_right:NV \l_@@_uncert_tl \l_@@_flex_tl \tl_set:Nn \l_@@_flex_tl { {#3} } \@@_parse_loop_first:NNN \l_@@_flex_tl \c_false_bool } % \end{macrocode} % A common auxiliary for the various non-digit token functions: tidy up the % integer and decimal parts of a number. Here, the two flags are used to % indicate if empty decimal and uncertainty parts should be included in % the storage cycle. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_loop_main_store:NNN #1#2#3 { \tl_put_right:Nx #1 { { \tl_if_empty:NTF \l_@@_partial_tl { 0 } { \exp_not:V \l_@@_partial_tl } } \bool_if:NT #2 { { } } \bool_if:NT #3 { { } } } \tl_clear:N \l_@@_partial_tl } % \end{macrocode} % After a decimal marker there has to be a digit if there wasn't one before % it. That is handled by using a dedicated function, which checks for % an empty integer part first then either simply hands off or looks for % a digit. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_loop_after_decimal:NN #1#2 { \tl_if_blank:eTF { \exp_after:wN \use_none:n #1 } { \quark_if_recursion_tail_stop_do:Nn #2 { \@@_parse_loop_break:w \q_recursion_stop } \tl_if_in:NnTF \l_@@_input_digit_tl {#1} { \tl_put_right:Nn \l_@@_partial_tl {#2} \@@_parse_loop_main:NNNN #1 \c_false_bool \c_true_bool } { \@@_parse_loop_break:w } } { \@@_parse_loop_main:NNNN #1 \c_false_bool \c_true_bool #2 } } % \end{macrocode} % Something is not right: remove all of the remaining tokens from the % number and clear the storage areas as a signal for the next part of the % code. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_loop_break:w #1 \q_recursion_stop { \tl_clear:N \l_@@_flex_tl \tl_clear:N \l_@@_parsed_tl \tl_clear:N \l_@@_uncert_tl } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_parse_sign:} % \begin{macro}{\@@_parse_sign_aux:Nw} % The first token of a number after a comparator could be a sign. A quick % check is made and if found stored. For the number to be valid it has to be % more than just a sign, so the next part of the chain is only called if that % is the case. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_sign: { \exp_after:wN \@@_parse_sign_aux:Nw \l_@@_arg_tl \q_stop } \cs_new_protected:Npn \@@_parse_sign_aux:Nw #1#2 \q_stop { \tl_if_in:NnTF \l_siunitx_number_input_sign_tl {#1} { \tl_set:Nn \l_@@_arg_tl {#2} \bool_lazy_and:nnTF { \token_if_eq_charcode_p:NN #1 + } { ! \l_@@_explicit_plus_bool } { \tl_set:Nn \l_@@_parsed_tl { { } } } { \tl_set:Nn \l_@@_parsed_tl { {#1} } } } { \tl_set:Nn \l_@@_parsed_tl { { } } } \tl_if_empty:NTF \l_@@_arg_tl { \tl_clear:N \l_@@_parsed_tl } { \@@_parse_exponent: } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_parse_uncert:N} % \begin{macro}{\@@_parse_uncert:NNN} % \begin{macro} % { % \@@_parse_uncert_auxi:N , % \@@_parse_uncert_auxii:N , % \@@_parse_uncert_auxiv:N % } % \begin{macro}{\@@_parse_uncert_auxiv:} % \begin{macro}{\@@_parse_uncert_marker:} % \begin{macro}{\@@_parse_uncert_marker:nnn} % \begin{macro}{\@@_parse_uncert_marker:nnnw} % \begin{macro}{\@@_parse_uncert_marker:Nnnn} % \begin{macro}{\@@_parse_uncert_marker:w} % \begin{macro}{\@@_parse_uncert_marker:nnnnN} % \begin{macro}{\@@_parse_uncert_marker:nnnnnN} % \begin{macro} % { % \@@_parse_uncert_marker:nnnnnnN , % \@@_parse_uncert_marker:ennnnnN % } % \begin{macro}{\@@_parse_uncert_after:N} % Parsing a combined uncertainty has a very restricted range of allowed % tokens. A closing uncertainty token in the first place is an error, % so we filter that out explicitly. After that, we check for digits, % which require checking for significant digits. The non-digit function % is separate to make the flow clearer. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_uncert:N #1 { \quark_if_recursion_tail_stop_do:Nn #1 { \@@_parse_loop_break:w \q_recursion_stop } \tl_if_in:NnTF \l_@@_input_uncert_close_tl {#1} { \@@_parse_loop_break:w } { \@@_parse_uncert:NNN \c_false_bool \@@_parse_uncert_auxi:N #1 } } % \end{macrocode} % Deal with digits: a simple question of whether they are significant. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_uncert:NNN #1#2#3 { \quark_if_recursion_tail_stop_do:Nn #3 { \@@_parse_loop_break:w \q_recursion_stop } \tl_if_in:NnTF \l_@@_input_digit_tl {#3} { \bool_lazy_or:nnTF {#1} { ! \str_if_eq_p:nn {#3} { 0 } } { \tl_put_right:Nn \l_@@_partial_tl {#3} \@@_parse_uncert:NNN \c_true_bool #2 } { \@@_parse_uncert:NNN \c_false_bool #2 } } { #2 #3 } } % \end{macrocode} % For the two auxiliaries, the difference is the handling of a % decimal marker: one may be present, but only exactly one. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_uncert_auxi:N #1 { \tl_if_in:NnTF \l_@@_input_uncert_close_tl {#1} { \@@_parse_uncert_auxiii: \@@_parse_uncert_after:N } { \tl_if_in:NnTF \l_siunitx_number_input_decimal_tl {#1} { \@@_parse_uncert_marker: } { \@@_parse_uncert_auxiv:N #1 } } } \cs_new_protected:Npn \@@_parse_uncert_auxii:N #1 { \tl_if_in:NnTF \l_@@_input_uncert_close_tl {#1} { \@@_parse_uncert_auxiii: \@@_parse_uncert_after:N } { \@@_parse_uncert_auxiv:N #1 } } % \end{macrocode} % Deal with the closing bracket, which might leave us with nothing if there % were no significant digits. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_uncert_auxiii: { \bool_lazy_and:nnT { \l_@@_zero_uncert_bool } { \tl_if_empty_p:N \l_@@_partial_tl } { \tl_set:Nn \l_@@_partial_tl { 0 } } } % \end{macrocode} % A common auxiliary for the case where the token is not a digit, a % decimal mark or a closing parenthesis. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_uncert_auxiv:N #1 { \tl_if_empty:NTF \l_@@_tolerance_tl { \tl_if_in:NnTF \l_@@_input_uncert_divide_tl {#1} { \cs_set_eq:NN \l_@@_tolerance_tl \l_@@_partial_tl \tl_clear:N \l_@@_partial_tl \@@_parse_uncert:N } { \@@_parse_loop_break:w } } { \@@_parse_loop_break:w } } % \end{macrocode} % Handling a decimal marker in the uncertainty is a bit tricky: we need to make % sure it's valid. First, we need to be sure that the integer part of the captured % uncertainty is not too long. Then we need to check that the decimal part is % not too long, and extend the decimal if it is. % Both of these require data from the collected partial number, % so we extract that first. Checking the decimal part needs the length of the % not-yet-collected uncertainty. There may be one or more parts to that, so % we have to grab up to the \emph{first} closing token to count the length: % just grabbing everything only works if there is only a single uncertainty. % We take protective steps against an entirely-missing closing token so that % there is not an uncontrolled error. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_uncert_marker: { \exp_after:wN \@@_parse_uncert_marker:nnn \l_@@_parsed_tl } \cs_new_protected:Npn \@@_parse_uncert_marker:nnn #1#2#3 { \int_compare:nNnTF { \tl_count:N \l_@@_partial_tl } > { \tl_count:n {#2} } { \@@_parse_loop_break:w } { \@@_parse_uncert_marker:nnnw {#1} {#2} {#3} } } \cs_new_protected:Npn \@@_parse_uncert_marker:nnnw #1#2#3#4 \q_recursion_tail \q_recursion_stop { \tl_if_in:nVTF {#4} \l_@@_input_uncert_close_tl { \exp_after:wN \@@_parse_uncert_marker:Nnnn \l_@@_input_uncert_close_tl {#1} {#2} {#3} } { \@@_parse_loop_break:w } #4 \q_recursion_tail \q_recursion_stop } \cs_new_protected:Npn \@@_parse_uncert_marker:Nnnn #1#2#3#4 { \cs_set_protected:Npn \@@_parse_uncert_marker:w ##1 #1 { \@@_parse_uncert_marker:nnnnN {#2} {#3} {#4} {##1} #1 } \@@_parse_uncert_marker:w } \cs_new_protected:Npn \@@_parse_uncert_marker:w { } % \end{macrocode} % With the separated out main part and the current uncertainty part % available, we can pad the main part if required then restart the % collection of the uncertainty having thrown away the decimal marker % and with the lengths lined up. To account for asymmetrical % uncertainties, there is a bit of work in tracking. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_uncert_marker:nnnnN #1#2#3#4#5 { \tl_set:Nx \l_@@_tmp_tl { \tl_head:V \l_@@_input_uncert_divide_tl } \tl_if_empty:NTF \l_@@_tmp_tl { \@@_parse_uncert_marker:nnnnnN {#1} {#2} {#3} {#4} { } #5 } { \use:x { \cs_set_protected:Npn \exp_not:N \@@_parse_uncert_marker:w ####1 \l_@@_tmp_tl ####2 \l_@@_tmp_tl ####3 \exp_not:N \q_stop { \exp_not:N \tl_if_blank:nTF {####2} { \@@_parse_uncert_marker:nnnnnN \exp_not:n { {#1} {#2} {#3} } {####1} { } } { \@@_parse_uncert_marker:nnnnnN \exp_not:n { {#1} {#2} {#3} } {####1} { \l_@@_tmp_tl ####2 } } \exp_not:N #5 } \exp_not:N \@@_parse_uncert_marker:w #4 \l_@@_tmp_tl \l_@@_tmp_tl \exp_not:N \q_stop } } } \cs_new_protected:Npn \@@_parse_uncert_marker:nnnnnN #1#2#3#4#5#6 { \@@_parse_uncert_marker:ennnnnN { \int_eval:n { \tl_count:n {#4} } } {#1} {#2} {#3} {#4} {#5} #6 } \cs_new_protected:Npn \@@_parse_uncert_marker:nnnnnnN #1#2#3#4#5#6#7 { \bool_lazy_and:nnF { \tl_if_empty_p:N \l_@@_tolerance_tl } { \tl_if_empty_p:N \l_@@_uncert_types_tl } { \int_compare:nNnF {#1} = \l_@@_uncert_offset_int { \@@_parse_loop_break:w } } \int_set:Nn \l_@@_uncert_offset_int {#1} \tl_set:Nx \l_@@_parsed_tl { {#2} {#3} { #4 \prg_replicate:nn { \int_max:nn { 0 } { #1 - \tl_count:n {#4} } } { 0 } } } \tl_if_empty:NTF \l_@@_partial_tl { \@@_parse_uncert:NNN \c_false_bool \@@_parse_uncert_auxii:N } { \@@_parse_uncert:NNN \c_true_bool \@@_parse_uncert_auxii:N } #5#6#7 } \cs_generate_variant:Nn \@@_parse_uncert_marker:nnnnnnN { e } % \end{macrocode} % At the end of collection, we can either start another one or be done: % either way we move the data around. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_uncert_after:N #1 { \tl_set:Nx \l_@@_uncert_tl { \exp_not:V \l_@@_uncert_tl \tl_if_empty:NF \l_@@_partial_tl { { \tl_if_empty:NTF \l_@@_tolerance_tl { \exp_not:V \l_@@_partial_tl } { { \exp_not:V \l_@@_tolerance_tl } { \exp_not:V \l_@@_partial_tl } } } } } \tl_set:Nx \l_@@_uncert_types_tl { \l_@@_uncert_types_tl \tl_if_empty:NTF \l_@@_tolerance_tl { S } { A } } \tl_clear:N \l_@@_partial_tl \tl_clear:N \l_@@_tolerance_tl \quark_if_recursion_tail_stop_do:Nn #1 { \tl_set:Nx \l_@@_parsed_tl { \exp_not:V \l_@@_parsed_tl { \tl_if_empty:NF \l_@@_uncert_tl { { \l_@@_uncert_types_tl } \exp_not:V \l_@@_uncert_tl } } } \tl_clear:N \l_@@_partial_tl \tl_clear:N \l_@@_uncert_tl \int_zero:N \l_@@_uncert_offset_int } \tl_if_in:NnTF \l_@@_input_uncert_open_tl {#1} { \@@_parse_uncert:N } { \@@_parse_loop_break:w } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \subsection{Processing numbers} % % \begin{variable} % { % \l_@@_drop_exponent_bool , % \l_@@_drop_uncertainty_bool , % \l_@@_drop_zero_decimal_bool , % \l_@@_exponent_mode_tl , % \l_@@_exponent_fixed_int , % \l_@@_min_decimal_int , % \l_@@_min_integer_int , % \l_@@_round_dir_tl , % \l_@@_round_half_even_bool , % \l_@@_round_mode_tl , % \l_@@_round_pad_bool , % \l_@@_round_precision_int , % \l_@@_round_positive_bool , % \l_@@_round_uncert_dir_tl % } % \begin{macrocode} \keys_define:nn { siunitx } { drop-exponent .bool_set:N = \l_@@_drop_exponent_bool , drop-uncertainty .bool_set:N = \l_@@_drop_uncertainty_bool , drop-zero-decimal .bool_set:N = \l_@@_drop_zero_decimal_bool , exponent-mode .choices:nn = { engineering , fixed , input , scientific , threshold } { \tl_set_eq:NN \l_@@_exponent_mode_tl \l_keys_choice_tl } , exponent-thresholds .code:n = { \@@_set_thresholds:n {#1} } , fixed-exponent .int_set:N = \l_@@_exponent_fixed_int , minimum-decimal-digits .int_set:N = \l_@@_min_decimal_int , minimum-integer-digits .int_set:N = \l_@@_min_integer_int , round-direction .choices:nn = { down , nearest , up } { \tl_set_eq:NN \l_@@_round_dir_tl \l_keys_choice_tl } , round-half .choice: , round-half / even .code:n = { \bool_set_true:N \l_@@_round_half_even_bool } , round-half / up .code:n = { \bool_set_false:N \l_@@_round_half_even_bool } , round-minimum .code:n = { \@@_set_round_min:n {#1} } , round-mode .choices:nn = { figures , none , places, uncertainty } { \tl_set_eq:NN \l_@@_round_mode_tl \l_keys_choice_tl } , round-pad .bool_set:N = \l_@@_round_pad_bool , round-precision .int_set:N = \l_@@_round_precision_int , round-zero-positive .bool_set:N = \l_@@_round_positive_bool , uncertainty-round-direction .choices:nn = { down , nearest , up } { \tl_set_eq:NN \l_@@_round_uncert_dir_tl \l_keys_choice_tl } , } \bool_new:N \l_@@_round_half_even_bool \tl_new:N \l_@@_exponent_mode_tl \tl_new:N \l_@@_round_dir_tl \tl_new:N \l_@@_round_mode_tl \tl_new:N \l_@@_round_uncert_dir_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_round_min_tl} % For storing the minimum for rounding. % \begin{macrocode} \tl_new:N \l_@@_round_min_tl % \end{macrocode} % \end{variable} % % \begin{macro}{\@@_set_round_min:n} % \begin{macro}{\@@_set_round_min:nnnnnnn} % For setting the rounding minimum, the aim is to do as much of the work % now as possible. That's mainly a question of checking if there are any % significant digits in the mantissa given. % \begin{macrocode} \cs_new_protected:Npn \@@_set_round_min:n #1 { \siunitx_number_parse:nN {#1} \l_@@_tmp_tl \exp_after:wN \@@_set_round_min:nnnnnnn \l_@@_tmp_tl } \cs_new_protected:Npn \@@_set_round_min:nnnnnnn #1#2#3#4#5#6#7 { \tl_set:Nx \l_@@_round_min_tl { \bool_lazy_and:nnF { \str_if_eq_p:nn {#3} { 0 } } { \str_if_eq_p:ee { \exp_not:n {#4} } { \prg_replicate:nn { \tl_count:n {#4} } { 0 } } } { \exp_not:n { {#3} {#4} } } } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{variable}{\l_@@_lower_threshold_int, \l_@@_upper_threshold_int} % For storing the range for exponents. % \begin{macrocode} \int_new:N \l_@@_lower_threshold_int \int_new:N \l_@@_upper_threshold_int % \end{macrocode} % \end{variable} % % \begin{macro}{\@@_set_round_thresholds:n} % \begin{macro}{\@@_set_round_thresholds:w} % \begin{macro}{\@@_set_round_threshold:nn} % Split the range, parse each part, set the data structures. % \begin{macrocode} \cs_new_protected:Npx \@@_set_thresholds:n #1 { \exp_not:N \@@_set_thresholds:w #1 \token_to_str:N : \token_to_str:N : \exp_not:N \q_stop } \use:x { \cs_new_protected:Npn \exp_not:N \@@_set_thresholds:w ##1 \token_to_str:N : ##2 \token_to_str:N : ##3 \exp_not:N \q_stop } { \@@_set_threshold:nn { lower } {#1} \@@_set_threshold:nn { upper } {#2} } \cs_new_protected:Npn \@@_set_threshold:nn #1#2 { \int_set:cn { l__@@_ #1 _threshold_int } { 0 #2 } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}[pTF]{\@@_if_threshold_exceeded:n} % A short auxiliary. % \begin{macrocode} \prg_new_conditional:Npnn \@@_if_threshold_exceeded:n #1 { T , F , TF , p } { \bool_lazy_and:nnTF { \int_compare_p:nNn {#1} > \l_@@_lower_threshold_int } { \int_compare_p:nNn {#1} < \l_@@_upper_threshold_int } \prg_return_true: \prg_return_false: } % \end{macrocode} % \end{macro} % % \begin{macro}{\siunitx_number_process:NN, \siunitx_number_process:cc} % \begin{macro}{\@@_process:nnnnnnnNN} % A top-level interface for the processing tools. Rounding happens in all % cases, but exponents are only processed if the value is not $0$. % \begin{macrocode} \cs_new_protected:Npn \siunitx_number_process:NN #1#2 { \tl_if_empty:NTF #1 { \tl_clear:N #2 } { \@@_drop_uncertainty:NN #1 #2 \exp_after:wN \@@_process:nnnnnnnNN #2 #2 #2 \@@_drop_exponent:NN #2 #2 \@@_zero_decimal:NN #2 #2 \@@_digits:NN #2 #2 } } \cs_generate_variant:Nn \siunitx_number_process:NN { cc } \cs_new_protected:Npn \@@_process:nnnnnnnNN #1#2#3#4#5#6#7#8#9 { \bool_lazy_and:nnTF { \str_if_eq_p:nn {#3} { 0 } } { \str_if_eq_p:ee { \exp_not:n {#4} } { \prg_replicate:nn { \tl_count:n {#4} } { 0 } } } { \@@_round:NN #8 #9 } { \@@_exponent:NN #8 #9 \@@_round:NN #9 #9 } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_exponent:NN} % \begin{macro}[EXP] % { % \@@_exponent:nnnnnnn , % \@@_exponent_aux:nnnnnnn , % \@@_exponent_engineering:nnnnnnn , % \@@_exponent_fixed:nnnnnnn , % \@@_exponent_scientific:nnnnnnn % } % \begin{macro}[EXP] % { % \@@_exponent_fixed:nnnnnnnn , % \@@_exponent_fixed:ennnnnnn , % \@@_exponent_scientific:nnnnnnnn , % \@@_exponent_scientific:ennnnnnn % } % \begin{macro}[EXP]{\@@_exponent_scientific:nnnw} % \begin{macro}[EXP]{\@@_exponent_shift:nnn, \@@_exponent_shift:nne} % \begin{macro}[EXP]{\@@_exponent_shift_down:nnnw} % \begin{macro}[EXP]{\@@_exponent_shift_down:nnn} % \begin{macro}[EXP]{\@@_exponent_shift_down:nw} % \begin{macro}[EXP]{\@@_exponent_shift_up:nnn} % \begin{macro}[EXP]{\@@_exponent_shift_up:nnw} % \begin{macro}[EXP] % {\@@_exponent_shift_up_aux:nnn, \@@_exponent_shift_up_aux:een} % \begin{macro}[EXP]{\@@_exponent_shift_uncert:nw} % \begin{macro}[EXP] % {\@@_exponent_shift_uncert_S:nnnn, \@@_exponent_shift_uncert_S:ennn} % \begin{macro}[EXP]{\@@_exponent_uncert:n} % \begin{macro}[EXP]{\@@_exponent_finalise:n} % \begin{macro}[EXP]{\@@_exponentcd te_engineering_aux:nnnnnnn} % \begin{macro}[EXP] % { % \@@_exponent_engineering_0:nnnn , % \@@_exponent_engineering_1:nnnn , % \@@_exponent_engineering_2:nnnn % } % \begin{macro}[EXP]{\@@_exponent_engineering:nnNw} % \begin{macro}[EXP]{\@@_exponent_engineering_uncert:nn} % \begin{macro}[EXP]{\@@_exponent_engineering_uncert_S:nnn} % \begin{macro}[EXP] % {\@@_exponent_threshold:nnnnnnn, \@@_exponent_threshold_aux:nnnnnnn} % \begin{macro}[EXP]{\@@_exponent_threshold:n, \@@_exponent_threshold:e} % Manipulating an exponent is done using a single expansion function % \emph{unless} dealing with engineering-style output. The latter is easier % to handle by first converting to scientific output, then post-processing. % (Once \texttt{e}-type expansion is generally available, this will be % handling using a single \cs{tl_set:Nx}.) % \begin{macrocode} \cs_new_protected:Npn \@@_exponent:NN #1#2 { \tl_set:Nx #2 { \exp_after:wN \@@_exponent:nnnnnnn #1 } \str_if_eq:VnT \l_@@_exponent_mode_tl { engineering } { \tl_set:Nx #2 { \exp_after:wN \@@_exponent_engineering_aux:nnnnnnn #2 } } } \cs_new:Npn \@@_exponent:nnnnnnn #1#2#3#4#5#6#7 { \str_if_eq:VnTF \l_@@_exponent_mode_tl { input } { \exp_not:n { {#1} {#2} {#3} {#4} {#5} {#6} {#7} } } { \tl_if_blank:nTF {#7} { \@@_exponent_aux:nnnnnnn {#1} {#2} {#3} {#4} {#5} {#6} { 0 } } { \@@_exponent_aux:nnnnnnn {#1} {#2} {#3} {#4} {#5} {#6} {#7} } } } \cs_new:Npn \@@_exponent_aux:nnnnnnn #1#2#3#4#5#6#7 { \use:c { @@_exponent_ \l_@@_exponent_mode_tl :nnnnnnn } {#1} {#2} {#3} {#4} {#5} {#6} {#7} } \cs_new:Npn \@@_exponent_fixed:nnnnnnn #1#2#3#4#5#6#7 { \@@_exponent_fixed:ennnnnnn { \int_eval:n { \l_@@_exponent_fixed_int - (#6#7) } } {#1} {#2} {#3} {#4} {#5} {#6} {#7} } \cs_new:Npn \@@_exponent_fixed:nnnnnnnn #1#2#3#4#5#6#7#8 { \exp_not:n { {#2} {#3} } \@@_exponent_shift:nnn {#1} {#4} {#5} \@@_exponent_uncert:n {#6} { \int_compare:nNnT \l_@@_exponent_fixed_int < 0 { - } } { \int_abs:n \l_@@_exponent_fixed_int } } \cs_generate_variant:Nn \@@_exponent_fixed:nnnnnnnn { e } % \end{macrocode} % To convert to scientific notation, the key question is to find the number % of significant places. That is easy enough if the number has a non-zero % integer component. For a pure decimal, we have to trim off leading % zeros in a loop. % \begin{macrocode} \cs_new:Npn \@@_exponent_scientific:nnnnnnn #1#2#3#4#5#6#7 { \@@_exponent_scientific:ennnnnnn { \int_eval:n { \tl_count:n {#3} } } {#1} {#2} {#3} {#4} {#5} {#6} {#7} } \cs_new:Npn \@@_exponent_scientific:nnnnnnnn #1#2#3#4#5#6#7#8 { \exp_not:n { {#2} {#3} } \int_compare:nNnTF {#1} = 1 { \str_if_eq:nnTF {#4} { 0 } { \@@_exponent_scientific:nnnw { 0 } {#6} { #7#8 } #5 \q_stop } { \exp_not:n { {#4} {#5} {#6} {#7} {#8} } } } { \@@_exponent_shift:nnn { #1 - 1 } {#4} {#5} \@@_exponent_uncert:n {#6} \@@_exponent_finalise:n { #1 + #7#8 - 1 } } } \cs_generate_variant:Nn \@@_exponent_scientific:nnnnnnnn { e } \cs_new_eq:NN \@@_exponent_engineering:nnnnnnn \@@_exponent_scientific:nnnnnnn \cs_new:Npn \@@_exponent_scientific:nnnw #1#2#3#4#5 \q_stop { \str_if_eq:nnTF {#4} { 0 } { \@@_exponent_scientific:nnnw { #1 - 1 } {#2} {#3} #5 \q_stop } { \exp_not:n { {#4} {#5} {#2} } \@@_exponent_finalise:n { #1 + #3 - 1 } } } % \end{macrocode} % When adjusting the exponent position, there are two paths depending on % which way the shift takes place. % \begin{macrocode} \cs_new:Npn \@@_exponent_shift:nnn #1#2#3 { \int_compare:nNnTF {#1} > 0 { \@@_exponent_shift_down:nnnw {#1} {#3} { } #2 \q_stop } { \int_compare:nNnTF {#1} < 0 { \@@_exponent_shift_up:nnn {#1} {#2} {#3} } { {#2} {#3} } } } \cs_generate_variant:Nn \@@_exponent_shift:nnn { nne } % \end{macrocode} % For shifting the exponent down, there is first a loop to reserve the % integer part before doing the work: that of course has to be undone % for any remainder at he end of the process. % \begin{macrocode} \cs_new:Npn \@@_exponent_shift_down:nnnw #1#2#3#4#5 \q_stop { \tl_if_blank:nTF {#5} { \@@_exponent_shift_down:nnn {#1} { #4 #3 } {#2} } { \@@_exponent_shift_down:nnnw {#1} {#2} { #4 #3 } #5 \q_stop } } \cs_new:Npn \@@_exponent_shift_down:nnn #1#2#3 { \int_compare:nNnTF {#1} = 0 { { \tl_reverse:n {#2} } \exp_not:n { {#3} } } { \@@_exponent_shift_down:nw {#1} #2 \q_stop {#3} } } \cs_new:Npn \@@_exponent_shift_down:nw #1#2#3 \q_stop #4 { \tl_if_blank:nTF {#3} { \@@_exponent_shift_down:nnn { #1 - 1 } { 0 } { #2#4 } } { \@@_exponent_shift_down:nnn { #1 - 1 } {#3} { #2#4 } } } % \end{macrocode} % For shifting the exponent up, we can run out of decimal digits, at which % point filling is easy. Other than that a simple loop as we are picking % input off the front of the decimal part. We also need to deal with leading % zeros: these cannot accumulate. % \begin{macrocode} \cs_new:Npn \@@_exponent_shift_up:nnn #1#2#3 { \tl_if_blank:nTF {#3} { \@@_exponent_shift_up_aux:een { \int_eval:n { #1 + 1 } } { \str_if_eq:nnF {#2} { 0 } {#2} 0 } { } \@@_exponent_shift_uncert:nw { 1 } } { \@@_exponent_shift_up:nnw {#1} {#2} #3 \q_stop } } \cs_new:Npn \@@_exponent_shift_up:nnw #1#2#3#4 \q_stop { \@@_exponent_shift_up_aux:een { \int_eval:n { #1 + 1 } } { \str_if_eq:nnF {#2} { 0 } {#2} #3 } {#4} } \cs_new:Npn \@@_exponent_shift_up_aux:nnn #1#2#3 { \int_compare:nNnTF {#1} = 0 { \exp_not:n { {#2} {#3} } } { \tl_if_blank:nTF {#3} { { \exp_not:n {#2} \prg_replicate:nn { \int_abs:n {#1} } { 0 } } { } \@@_exponent_shift_uncert:nw { \int_abs:n {#1} } } { \@@_exponent_shift_up:nnn {#1} {#2} {#3} } } } \cs_generate_variant:Nn \@@_exponent_shift_up_aux:nnn { ee } % \end{macrocode} % If the shift has put digits into the integer part, we have to adjust the % uncertainty accordingly. First, we grab the data, then adjust by the % number of places that have been transferred. % \begin{macrocode} \cs_new:Npn \@@_exponent_shift_uncert:nw #1#2 \@@_exponent_uncert:n #3 { \tl_if_blank:nTF {#3} { #2 \@@_exponent_uncert:n { } } { \str_if_eq:nnTF {#3} { 0 } { #2 \@@_exponent_uncert:n { { S } { 0 } } } { \@@_exponent_shift_uncert_S:ennn { \prg_replicate:nn {#1} { 0 } } {#2} #3 } } } \cs_new:Npn \@@_exponent_shift_uncert_S:nnnn #1#2#3#4 { #2 \@@_exponent_uncert:n { { S } { #4#1 } } } \cs_generate_variant:Nn \@@_exponent_shift_uncert_S:nnnn { e } \cs_new:Npn \@@_exponent_uncert:n #1 { { \exp_not:n {#1} } } % \end{macrocode} % Tidy up the exponent to put the sign in the right place. % \begin{macrocode} \cs_new:Npn \@@_exponent_finalise:n #1 { \int_compare:nNnTF {#1} < 0 { { - } } { { } } { \int_abs:n {#1} } } % \end{macrocode} % This could (and eventually will) be combined with the main function above: % that will need \texttt{e}-type expansion. The input has already been % normalised such that the integer part is in the range $1 \le n < 10$. % Thus there are only three cases to deal with, depending on the required % adjustment to the exponent. % \begin{macrocode} \cs_new:Npn \@@_exponent_engineering_aux:nnnnnnn #1#2#3#4#5#6#7 { \exp_not:n { {#1} {#2} } \use:c { @@_exponent_engineering_ \int_compare:nNnTF {#6#7} < 0 { \int_case:nnF { \int_mod:nn { #7 } { 3 } } { { 1 } { 2 } { 2 } { 1 } } { 0 } } { \int_mod:nn {#7} { 3 } } :nnnn } {#3} {#4} {#5} {#6#7} } \cs_new:cpn { @@_exponent_engineering_0:nnnn } #1#2#3#4 { \exp_not:n { {#1} {#2} {#3} } \@@_exponent_finalise:n {#4} } \cs_new:cpn { @@_exponent_engineering_1:nnnn } #1#2#3#4 { \tl_if_blank:nTF {#2} { { \exp_not:n { #1 0 } } { } { \@@_exponent_engineering_uncert:nn {#3} { 0 } } } { { \exp_not:n {#1} \exp_not:o { \tl_head:w #2 \q_stop } } { \tl_tail:n {#2} } { \exp_not:n {#3} } } \@@_exponent_finalise:n { #4 - 1 } } \cs_new:cpn { @@_exponent_engineering_2:nnnn } #1#2#3#4 { \tl_if_blank:nTF {#2} { { \exp_not:n { #1 00 } } { } { \@@_exponent_engineering_uncert:nn {#3} { 00 } } } { \@@_exponent_engineering:nnNw {#1} {#3} #2 \q_stop } \@@_exponent_finalise:n { #4 - 2 } } \cs_new:Npn \@@_exponent_engineering:nnNw #1#2#3#4 \q_stop { \tl_if_blank:nTF {#4} { { \exp_not:n { #1#3 0 } } { } { \@@_exponent_engineering_uncert:nn {#2} { 0 } } } { { \exp_not:n {#1#3} \exp_not:o { \tl_head:w #4 \q_stop } } { \tl_tail:n {#4} } { \exp_not:n {#2} } } } \cs_new:Npn \@@_exponent_engineering_uncert:nn #1#2 { \tl_if_blank:nF {#1} { \use:c { @@_exponent_engineering_uncert_ \use_i:nn #1 :nnn } #1 {#2} } } \cs_new:Npn \@@_exponent_engineering_uncert_S:nnn #1#2#3 { { S } { \exp_not:n {#2} \str_if_eq:nnF {#2} { 0 } {#3} } } % \end{macrocode} % To branch here we need to work out the scientific notation form. % \begin{macrocode} \cs_new:Npn \@@_exponent_threshold:nnnnnnn #1#2#3#4#5#6#7 { \@@_exponent_threshold:e { \@@_exponent_scientific:nnnnnnn {#1} {#2} {#3} {#4} {#5} {#6} {#7} } } \cs_new:Npn \@@_exponent_threshold:n #1 { \@@_exponent_threshold_aux:nnnnnnn #1 } \cs_generate_variant:Nn \@@_exponent_threshold:n { e } \cs_new:Npn \@@_exponent_threshold_aux:nnnnnnn #1#2#3#4#5#6#7 { \@@_if_threshold_exceeded:nTF {#6#7} { \exp_not:n { {#1} {#2} } \@@_exponent_shift:nnn { -#6#7 } {#3} {#4} \@@_exponent_uncert:n {#5} { } { 0 } } { \exp_not:n { {#1} {#2} {#3} {#4} {#5} {#6} {#7} } } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_digits:NN} % \begin{macro}[EXP]{\@@_digits:nnnnnnn} % \begin{macro}[EXP]{\@@_digits:nn} % \begin{macro}[EXP]{\@@_digits_uncert:nnw} % \begin{macro}[EXP] % {\@@_digits_uncert_A:nn, \@@_digits_uncert_S:nn, \@@_digits_uncert_aux:nn} % \begin{macro}[EXP]{\@@_digits_uncert_A:nnn} % \begin{macro}[EXP]{\@@_digits_uncert:nN} % \begin{macro}[EXP]{\@@_digits_uncert:nNw} % Forcing a minimum number of digits in each part is quite easy. As % the common case is that we don't do anything here, there is no real need % to optimise the calculation (normally also numbers have only a few digits). % \begin{macrocode} \cs_new_protected:Npn \@@_digits:NN #1#2 { \tl_set:Nx #2 { \exp_after:wN \@@_digits:nnnnnnn #1 } } \cs_new:Npn \@@_digits:nnnnnnn #1#2#3#4#5#6#7 { \exp_not:n { {#1} {#2} } { \@@_digits:nn \l_@@_min_integer_int {#3} \exp_not:n {#3} } { \exp_not:n {#4} \@@_digits:nn \l_@@_min_decimal_int {#4} } { \tl_if_blank:nF {#5} { \@@_digits_uncert:nnw {#4} #5 \q_stop } } \exp_not:n { {#6} {#7} } } \cs_new:Npn \@@_digits:nn #1#2 { \int_compare:nNnT { #1 - \tl_count:n {#2} } > 0 { \prg_replicate:nn { #1 - \tl_count:n {#2} } { 0 } } } \cs_new:Npn \@@_digits_uncert:nnw #1#2#3 \q_stop { { #2 } \cs_if_exist:cTF { @@_digits_uncert_ #2 :nn } { { \use:c { @@_digits_uncert_ #2 :nn } {#1} {#3} } } { \@@_digits_uncert:nN {#1} #2 \q_recursion_tail #3 \q_recursion_stop } } \cs_new:Npn \@@_digits_uncert_A:nn #1#2 { \@@_digits_uncert_A:nnn {#1} #2 } \cs_new:Npn \@@_digits_uncert_A:nnn #1#2#3 { { \@@_digits_uncert_aux:nn {#1} {#2} } { \@@_digits_uncert_aux:nn {#1} {#3} } } \cs_new:Npn \@@_digits_uncert_S:nn #1#2 { \@@_digits_uncert_aux:nn {#1} {#2} } \cs_new:Npn \@@_digits_uncert_aux:nn #1#2 { \exp_not:n {#2} \int_compare:nNnT { \l_@@_min_decimal_int - \tl_count:n {#1} } > 0 { \prg_replicate:nn { \l_@@_min_decimal_int - \tl_count:n {#1} } { 0 } } } \cs_new:Npn \@@_digits_uncert:nN #1#2 { \quark_if_recursion_tail_stop:N #2 \@@_digits_uncert:nNw {#1} #2 } \cs_new:Npn \@@_digits_uncert:nNw #1#2#3 \q_recursion_tail #4 { { \use:c { @@_digits_uncert_ #2 :nn } {#1} {#4} } \@@_digits_uncert:nN {#1} #3 \q_recursion_tail } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_drop_exponent:NN} % \begin{macro}[EXP]{\@@_drop_exponent:nnnnnnn} % Simple stripping of the exponent. % \begin{macrocode} \cs_new_protected:Npn \@@_drop_exponent:NN #1#2 { \bool_if:NT \l_@@_drop_exponent_bool { \str_if_eq:VnT \l_@@_exponent_mode_tl { input } { \msg_warning:nn { siunitx } { ambiguous-dropped-exponent } } \tl_set:Nx #2 { \exp_after:wN \@@_drop_exponent:nnnnnnn #1 } } } \cs_new:Npn \@@_drop_exponent:nnnnnnn #1#2#3#4#5#6#7 { \exp_not:n { {#1} {#2} {#3} {#4} {#5} { } { 0 } } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_drop_uncertainty:NN} % \begin{macro}[EXP]{\@@_drop_uncertainty:nnnnnnn} % Simple stripping of the uncertainty. % \begin{macrocode} \cs_new_protected:Npn \@@_drop_uncertainty:NN #1#2 { \bool_if:NTF \l_@@_drop_uncertainty_bool { \tl_set:Nx #2 { \exp_after:wN \@@_drop_uncertainty:nnnnnnn #1 } } { \tl_set_eq:NN #2 #1 } } \cs_new:Npn \@@_drop_uncertainty:nnnnnnn #1#2#3#4#5#6#7 { \exp_not:n { {#1} {#2} {#3} {#4} { } {#6} {#7} } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_round:NN} % \begin{macro}[EXP]{\@@_round:nnnnnnn} % Rounding is at the top level simple enough: fire off the expandable % set up which does the work. % \begin{macrocode} \cs_new_protected:Npn \@@_round:NN #1#2 { \tl_set:Nx #2 { \str_if_eq:VnTF \l_@@_round_mode_tl { none } { \exp_not:V #1 } { \exp_after:wN \@@_round:nnnnnnn #1 } } } \cs_new:Npn \@@_round:nnnnnnn #1#2#3#4#5#6#7 { \tl_if_blank:nTF { #3#4 } { \exp_not:n { {#1} {#2} { } { } {#5} {#6} {#7} } } { \str_if_eq:nnTF {#4} { \empty } { \use:c { @@_round_ \l_@@_round_mode_tl :nnnnnnn } {#1} {#2} {#3} { } } { \use:c { @@_round_ \l_@@_round_mode_tl :nnnnnnn } {#1} {#2} {#3} {#4} } {#5} {#6} {#7} } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}[EXP]{\@@_round:nnn, \@@_round:enn} % \begin{macro}[EXP]{\@@_round:nnnn, \@@_round:Vnnn} % \begin{macro}[EXP] % { % \@@_round_auxi:nnnnN , % \@@_round_auxii:nnnnN , % \@@_round_auxiii:nnnnN , % \@@_round_auxiii:ennnN , % \@@_round_auxiv:nnnnN , % \@@_round_auxiv:ennnN % } % \begin{macro}[EXP]{\@@_round_auxv:nnnN, \@@_round_auxvi:nnnN} % \begin{macro}[EXP]{\@@_round_auxvii:nnnTF} % \begin{macro}[EXP]{\@@_round_auxviii:nnN, \@@_round_auxix:nnN} % \begin{macro}[EXP]{\@@_round_final_integer:nnw, \@@_round_final_decimal:nnw} % \begin{macro}[EXP] % {\@@_round_final_significant:n, \@@_round_final_significant:e} % \begin{macro}[EXP]{\@@_round_final_significant:N} % \begin{macro}[EXP]{\@@_round_final_significant:w} % \begin{macro}[EXP] % { % \@@_round_final_output:nn , % \@@_round_final_output:ne , % \@@_round_final_output:en , % \@@_round_final_output:ee % } % \begin{macro}[EXP]{\@@_round_final:nn, \@@_round_final:en} % \begin{macro}[EXP] % { % \@@_round_final_shift:nn , % \@@_round_final_shift:en , % \@@_round_final_shift:ee % } % \begin{macro}[EXP]{\@@_round_final_shift:Nw} % \begin{macro}[EXP] % { % \@@_round_engineering:nn , % \@@_round_fixed:nn , % \@@_round_input:nn , % \@@_round_scientific:nn , % \@@_round_threshold:nn % } % \begin{macro}[EXP]{\@@_round_engineering:NNNNn} % \begin{macro}[EXP]{\@@_round_engineering:nnN, \@@_round_engineering:VnN} % \begin{macro}[EXP]{\@@_round_truncate:n, \@@_round_truncate_direct:n} % \begin{macro}[EXP]{\@@_round_truncate:nnN} % Actually doing the rounding needs us to work from the least significant % digit, so we start by reversing the input. We \emph{could} also drop % digits in this phase, but tracking everything would be horrible, so % we go slightly slower but clearer and split the steps. First we reverse % the decimal part, then the integer. % \begin{macrocode} \cs_new:Npn \@@_round:nnn #1#2#3 { \@@_round:Vnnn \l_@@_round_dir_tl {#1} {#2} {#3} } \cs_generate_variant:Nn \@@_round:nnn { e } \cs_new:Npn \@@_round:nnnn #1#2#3#4 { \@@_round_auxi:nnnnN {#1} {#2} {#3} { } #4 \q_recursion_tail \q_recursion_stop } \cs_generate_variant:Nn \@@_round:nnnn { V } \cs_new:Npn \@@_round_auxi:nnnnN #1#2#3#4#5 { \quark_if_recursion_tail_stop_do:Nn #5 { \@@_round_auxii:nnnnN {#1} {#2} {#4} { } #3 \q_recursion_tail \q_recursion_stop } \@@_round_auxi:nnnnN {#1} {#2} {#3} {#5#4} } \cs_new:Npn \@@_round_auxii:nnnnN #1#2#3#4#5 { \quark_if_recursion_tail_stop_do:Nn #5 { \tl_if_blank:nTF {#3} { \@@_round_auxiv:nnnnN {#2} {#1} { } { } #4 \q_recursion_tail \q_recursion_stop } { \@@_round_auxiii:nnnnN {#2} {#1} {#4} { } #3 \q_recursion_tail \q_recursion_stop } } \@@_round_auxii:nnnnN {#1} {#2} {#3} {#5#4} } % \end{macrocode} % We now have the input reversed plus how many digits we need to discard % (|#1|). We have two functions, one which deals with the decimal part, % one of which deals with the integer. In the latter, we should never hit % the end before we've dropped all the digits: the fixed-zero is a % fall-back in case something weird happens. For the integer case, we need % to collect up zeros to pad the length back out correctly later. We also % have to cover the case where we round to exactly place above the length % of the integer: that may product a value of $1\dots$: we tidy up the % case where it comes out as $0$ later. % \begin{macrocode} \cs_new:Npn \@@_round_auxiii:nnnnN #1#2#3#4#5 { \quark_if_recursion_tail_stop_do:Nn #5 { \@@_round_auxiv:nnnnN {#1} {#2} { } {#4} #3 \q_recursion_tail \q_recursion_stop } \int_compare:nNnTF {#1} > 0 { \@@_round_auxiii:ennnN { \int_eval:n { #1 - 1 } } {#2} {#3} { #5#4 } } { \@@_round_auxv:nnnN {#2} {#4} {#3} #5 } } \cs_generate_variant:Nn \@@_round_auxiii:nnnnN { e } \cs_new:Npn \@@_round_auxiv:nnnnN #1#2#3#4#5 { \quark_if_recursion_tail_stop_do:Nn #5 { \int_compare:nNnTF {#1} = 0 { \@@_round_auxvi:nnnN {#2} {#4} {#3} 0 \q_recursion_tail \q_recursion_stop } { { 0 } { } } } \int_compare:nNnTF {#1} > 0 { \@@_round_auxiv:ennnN { \int_eval:n { #1 - 1 } } {#2} { #3 0 } { #5#4 } } { \@@_round_auxvi:nnnN {#2} {#4} {#3} #5 } } \cs_generate_variant:Nn \@@_round_auxiv:nnnnN { e } % \end{macrocode} % We now have the discarded digits, the matching filler and the % next digit. So we can make the decision on rounding: that % is handled by a common auxiliary. % \begin{macrocode} \cs_new:Npn \@@_round_auxv:nnnN #1#2#3#4 { \quark_if_recursion_tail_stop_do:Nn #4 { \@@_round_auxvi:nnnN {#1} {#2} { } #3 \q_recursion_tail \q_recursion_stop } \@@_round_auxvii:nnnTF {#1} {#2} {#4} { \@@_round_final_decimal:nnw } { \@@_round_auxviii:nnN } {#3} { } #4 } \cs_new:Npn \@@_round_auxvi:nnnN #1#2#3#4 { \quark_if_recursion_tail_stop_do:Nn #4 { { 0 } { } } \@@_round_auxvii:nnnTF {#1} {#2} {#4} { \@@_round_final_integer:nnw } { \@@_round_auxix:nnN } { } {#3} #4 } % \end{macrocode} % For rounding up or down, the decision here is easy: pick the appropriate % branch. For rounding to nearest, we need to deal with the half-even rule: % it can only apply at this stage, when the \emph{discarded} value can % be exactly half. % \begin{macrocode} \cs_new:Npn \@@_round_auxvii:nnnTF #1#2#3 { \str_case:nnF {#1} { { down } { \use_i:nn } { up } { \str_if_eq:eeTF {#2} { \prg_replicate:nn { \tl_count:n {#2} } { 0 } } { \use_i:nn } { \use_ii:nn } } } { \bool_lazy_or:nnTF { \int_compare_p:nNn { 0 \tl_head:n {#2} } < 5 } { \bool_lazy_all_p:n { { \l_@@_round_half_even_bool } { ! \int_if_odd_p:n {#3} } { \@@_round_if_half_p:n {#2} } } } } } % \end{macrocode} % The main rounding routines. These are only every called when there is % rounding to do, so there is no need to carry a flag forward. Thus the % question to ask is simple: is the next value a $9$ or not (as that % continues the sequence). There is a general need to handle the case % where a zero is rounded up: that automatically means a need to trim % the other end. % \begin{macrocode} \cs_new:Npn \@@_round_auxviii:nnN #1#2#3 { \quark_if_recursion_tail_stop_do:Nn #3 { \str_if_eq:nnTF {#1} { 0 } { \@@_round_final_output:ne { 1 } { \@@_round_truncate:n {#2} } } { \@@_round_auxix:nnN {#2} { } #1 \q_recursion_tail \q_recursion_stop } } \int_compare:nNnTF {#3} = 9 { \@@_round_auxviii:nnN {#1} { 0 #2 } } { \int_compare:nNnTF {#3} = 0 { \bool_lazy_or:nnTF { \tl_if_blank_p:n {#1} } { \int_compare_p:nNn {#1} = { 0 } } { \@@_round_final_decimal:nnw {#1} { 1 \@@_round_truncate:n {#2} } } { \@@_round_final_decimal:nnw {#1} { 1 #2 } } } { \@@_round_final:en { \int_eval:n { #3 + 1 } } { \@@_round_final_decimal:nnw {#1} {#2} } } } } \cs_new:Npn \@@_round_auxix:nnN #1#2#3 { \quark_if_recursion_tail_stop_do:Nn #3 { \tl_if_blank:nTF {#1} { \@@_round_final_shift:en { 1 \@@_round_truncate_direct:n {#2} 0 } { } } { \@@_round_final_shift:ee { 1 #2 } { \@@_round_truncate:n {#1} } } } \int_compare:nNnTF {#3} = 9 { \@@_round_auxix:nnN {#1} { 0 #2 } } { \@@_round_final:en { \int_eval:n { #3 + 1 } } { \@@_round_final_integer:nnw {#1} {#2} } } } % \end{macrocode} % Tidying up means grabbing the remaining digits and undoing the reversal. % \begin{macrocode} \cs_new:Npn \@@_round_final_decimal:nnw #1#2#3 \q_recursion_tail \q_recursion_stop { \@@_round_final_output:ee { \tl_reverse:n {#1} } { \tl_reverse:n {#3} #2 } } \cs_new:Npn \@@_round_final_integer:nnw #1#2#3 \q_recursion_tail \q_recursion_stop { \@@_round_final_output:en { \@@_round_final_significant:e { \tl_reverse:n {#3} #2 } } {#1} } \cs_new:Npn \@@_round_final_significant:n #1 { \@@_round_final_significant:N #1 \q_recursion_tail \q_recursion_stop } \cs_generate_variant:Nn \@@_round_final_significant:n { e } \cs_new:Npn \@@_round_final_significant:N #1 { \quark_if_recursion_tail_stop_do:Nn #1 { 0 } \int_compare:nNnTF {#1} = 0 { \@@_round_final_significant:N } { #1 \@@_round_final_significant:w } } \cs_new:Npn \@@_round_final_significant:w #1 \q_recursion_tail \q_recursion_stop {#1} \cs_new:Npn \@@_round_final_output:nn #1#2 { {#1} {#2} } \cs_generate_variant:Nn \@@_round_final_output:nn { ne , e , ee } \cs_new:Npn \@@_round_final:nn #1#2 { #2 #1 } \cs_generate_variant:Nn \@@_round_final:nn { e } % \end{macrocode} % Here we deal with the case where rounding applies along with an % exponent set based on number of places. We can only get here if an % additional integer digit has been added, so there is no need to test for % that. There are two cases for action: when using |scientific| mode, where % we always need to shift by one, and when using |engineering| mode if % we now have four digits. The latter is a bit more work: we need to trim % digits off as required. % \begin{macrocode} \cs_new:Npn \@@_round_final_shift:nn #1#2 { \bool_lazy_or:nnTF { \str_if_eq_p:Vn \l_@@_round_mode_tl { figures } } { \str_if_eq_p:Vn \l_@@_round_mode_tl { places } } { \use:c { @@_round_ \l_@@_exponent_mode_tl :nn } {#1} {#2} } { {#1} {#2} } } \cs_generate_variant:Nn \@@_round_final_shift:nn { en , ee } \cs_new:Npn \@@_round_engineering:nn #1#2 { \int_compare:nNnTF { \tl_count:n {#1} } = 4 { \bool_lazy_and:nnTF { \int_compare_p:nNn \l_@@_round_precision_int = 1 } { \str_if_eq_p:Vn \l_@@_round_mode_tl { figures } } { { 1 } { } } { \@@_round_engineering:NNNNn #1 {#2} } \@@_round_final_shift:Nw 3 } { {#1} {#2} } } \cs_new:Npn \@@_round_engineering:NNNNn #1#2#3#4#5 { {#1} \@@_round_engineering:VnN \l_@@_round_precision_int { } #2#3#4#5 \q_recursion_tail \q_recursion_stop } \cs_new:Npn \@@_round_engineering:nnN #1#2#3 { \quark_if_recursion_tail_stop_do:Nn #3 { {#2} } \int_compare:nNnTF {#1} = { 0 } { \use_i_delimit_by_q_recursion_stop:nw { {#2} } } { \@@_round_engineering:nnN { #1 - 1 } { #2#3 } } } \cs_generate_variant:Nn \@@_round_engineering:nnN { V } \cs_new:Npn \@@_round_fixed:nn #1#2 { {#1} {#2} } \cs_new:Npn \@@_round_input:nn #1#2 { {#1} {#2} } \cs_new:Npn \@@_round_scientific:nn #1#2 { \bool_lazy_and:nnTF { \int_compare_p:nNn \l_@@_round_precision_int = 1 } { \str_if_eq_p:Vn \l_@@_round_mode_tl { figures } } { { 1 } { } } { \@@_exponent_shift:nne { 1 } {#1} { \@@_round_truncate_direct:n {#2} } } \@@_round_final_shift:Nw 1 } \cs_new:Npn \@@_round_threshold:nn #1#2 { \@@_if_threshold_exceeded:nTF {#1} { \@@_round_input:nn } { \@@_round_scientific:nn } {#1} {#2} } \cs_new:Npn \@@_round_final_shift:Nw #1#2 \@@_round_end:nnn #3#4#5 { \exp_not:n { {#3} } \@@_exponent_finalise:n { #4#5 + #1 } } % \end{macrocode} % When we have rounded up to the next power of ten, we need to go back and % remove one more digit. That only happens when rounding to a number of % figures or when dealing with an integer part. % \begin{macrocode} \cs_new:Npn \@@_round_truncate:n #1 { \str_if_eq:VnTF \l_@@_round_mode_tl { figures } { \@@_round_truncate_direct:n {#1} } {#1} } \cs_new:Npn \@@_round_truncate_direct:n #1 { \@@_round_truncate:nnN { } { } #1 \q_recursion_tail \q_recursion_stop } \cs_new:Npn \@@_round_truncate:nnN #1#2#3 { \quark_if_recursion_tail_stop_do:Nn #3 { #1 } \@@_round_truncate:nnN {#1#2} {#3} } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}[EXP]{\@@_round_if_half_p:n} % \begin{macro}[EXP]{\@@_round_if_half:N} % A simple test for a valuing being exactly half: we can only test % digit-by-digit as there is no limit on the size of the value given. % \begin{macrocode} \prg_new_conditional:Npnn \@@_round_if_half:n #1 { p } { \int_compare:nNnTF { \tl_head:n { #1 0 } } = 5 { \exp_after:wN \@@_round_if_half:N \use_none:n #1 0 \q_recursion_tail \q_recursion_stop } { \prg_return_false: } } \cs_new:Npn \@@_round_if_half:N #1 { \quark_if_recursion_tail_stop_do:Nn #1 { \prg_return_true: } \int_compare:nNnTF {#1} = 0 { \@@_round_if_half:N } { \use_i_delimit_by_q_recursion_stop:nw { \prg_return_false: } } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}[EXP]{\@@_round_pad:nnn} % The case where we are short of digits is easy enough to handle: % generate zeros to pad it out. % \begin{macrocode} \cs_new:Npn \@@_round_pad:nnn #1#2#3 { {#2} { #3 \bool_if:NT \l_@@_round_pad_bool { \prg_replicate:nn {#1} { 0 } } } } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_round_end:nnn} % Used as a marker to allow adjustment when we pass a power of ten. % \begin{macrocode} \cs_new:Npn \@@_round_end:nnn #1#2#3 { \exp_not:n { {#1} {#2} {#3} } } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_round_figures:nnnnnnn, \@@_round_figures_aux:nnnnnnn} % \begin{macro}[EXP]{\@@_round_figures_count:nnN} % \begin{macro}[EXP] % {\@@_round_figures_count:nnnN, \@@_round_figures_count:ennN} % Rounding to figures only makes sense if the number is not $0$, so we start % by filtering out that case. We then check that % there is no uncertainty, and that the number of figures requested is % positive: if not, the result is always fixed at zero. % \begin{macrocode} \cs_new:Npn \@@_round_figures:nnnnnnn #1#2#3#4#5#6#7 { \bool_lazy_and:nnTF { \str_if_eq_p:nn {#3} { 0 } } { \str_if_eq_p:ee { \exp_not:n {#4} } { \prg_replicate:nn { \tl_count:n {#4} } { 0 } } } { \exp_not:n { {#1} {#2} {#3} {#4} {#5} {#6} {#7} } } { \@@_round_figures_aux:nnnnnnn {#1} {#2} {#3} {#4} {#5} {#6} {#7} } } \cs_new:Npn \@@_round_figures_aux:nnnnnnn #1#2#3#4#5#6#7 { \tl_if_blank:nTF {#5} { \int_compare:nNnTF \l_@@_round_precision_int > 0 { \exp_not:n { {#1} {#2} } \@@_round_figures_count:nnN {#3} {#4} #3#4 \q_recursion_tail \q_recursion_stop \@@_round_end:nnn { } {#6} {#7} } { { } { } { 0 } { } { } { } { 0 } } } { \exp_not:n { {#1} {#2} {#3} {#4} {#5} {#6} {#7} } } } % \end{macrocode} % The first real step is to count up the number of significant figures. % The only tricky issue here is dealing with leading zeros. % \begin{macrocode} \cs_new:Npn \@@_round_figures_count:nnN #1#2#3 { \quark_if_recursion_tail_stop_do:Nn #3 { { } { } { 0 } { } { } { } { 0 } } \int_compare:nNnTF {#3} = 0 { \@@_round_figures_count:nnN {#1} {#2} } { \@@_round_figures_count:nnnN { 1 } {#1} {#2} } } \cs_new:Npn \@@_round_figures_count:nnnN #1#2#3#4 { \quark_if_recursion_tail_stop_do:Nn #4 { \int_compare:nNnTF {#1} > \l_@@_round_precision_int { \@@_round:enn { \int_eval:n { #1 - \l_@@_round_precision_int } } {#2} {#3} } { \@@_round_pad:nnn { \l_@@_round_precision_int - (#1) } {#2} {#3} } } \@@_round_figures_count:ennN { \int_eval:n { #1 + 1 } } {#2} {#3} } \cs_generate_variant:Nn \@@_round_figures_count:nnnN { e } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}[EXP]{\@@_round_places:nnnnnnn} % \begin{macro}[EXP]{\@@_round_places_decimal:nn, \@@_round_places_integer:nn} % \begin{macro}[EXP]{\@@_round_places_finalise:n, \@@_round_places_finalise:e} % \begin{macro}[EXP]{\@@_round_places_finalise:nnnnnnn} % \begin{macro}[EXP]{\@@_round_places_finalise:nnnnn} % The first step when rounding to a fixed number of places is to establish % if this is in the decimal or integer parts. The two require different % calculations for how many digits to drop from the input. The no-op end % function here is to allow tidying up in some cases: see the finalisation % of rounding. % \begin{macrocode} \cs_new:Npn \@@_round_places:nnnnnnn #1#2#3#4#5#6#7 { \tl_if_blank:nTF {#5} { \@@_round_places_finalise:e { \exp_not:n { {#1} {#2} } \int_compare:nNnTF \l_@@_round_precision_int > 0 { \@@_round_places_decimal:nn } { \@@_round_places_integer:nn } {#3} {#4} \@@_round_end:nnn { } {#6} {#7} } } { \exp_not:n { {#1} {#2} {#3} {#4} {#5} {#6} {#7} } } } \cs_new:Npn \@@_round_places_decimal:nn #1#2 { \int_compare:nNnTF { \l_@@_round_precision_int - 0 \tl_count:n {#2} } > 0 { \@@_round_pad:nnn { \l_@@_round_precision_int - 0 \tl_count:n {#2} } {#1} {#2} } { \@@_round:enn { \int_eval:n { 0 \tl_count:n {#2} - \l_@@_round_precision_int } } {#1} {#2} } } \cs_new:Npn \@@_round_places_integer:nn #1#2 { \@@_round:enn { \int_eval:n { 0 \tl_count:n {#2} - \l_@@_round_precision_int } } {#1} {#2} } % \end{macrocode} % To finalise rounding to places, we have to worry about a minimum value: % that is basically a case of looking for value of zero and rearranging. We % also need to worry about a \enquote{negative zero} arising. % \begin{macrocode} \cs_new:Npn \@@_round_places_finalise:n #1 { \@@_round_places_finalise:nnnnnnn #1 } \cs_new:Npn \@@_round_places_finalise:nnnnnnn #1#2#3#4#5#6#7 { \str_if_eq:eeTF { \exp_not:n {#3#4} } { \prg_replicate:nn { \tl_count:n {#3#4} } { 0 } } { \tl_if_empty:NTF \l_@@_round_min_tl { \exp_not:n { {#1} } { \bool_lazy_and:nnF { \l_@@_round_positive_bool } { \str_if_eq_p:nn {#2} { - } } { \exp_not:n {#2} } } \exp_not:n { {#3} {#4} {#5} {#6} {#7} } } { \exp_after:wN \@@_round_places_finalise:nnnnn \l_@@_round_min_tl {#2} {#6} {#7} } } { \exp_not:n { {#1} {#2} {#3} {#4} {#5} {#6} {#7} } } } \cs_generate_variant:Nn \@@_round_places_finalise:n { e } \cs_new:Npn \@@_round_places_finalise:nnnnn #1#2#3#4#5 { { \str_if_eq:nnTF {#3} { - } { > } { < } } \exp_not:n { {#3} {#1} {#2} { } {#4} {#5} } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}[EXP]{\@@_round_uncertainty:nnnnnnn} % \begin{macro}[EXP]{\@@_round_uncertainty:nnn, \@@_round_uncertainty:nno} % \begin{macro}[EXP] % {\@@_round_uncertainty:nnnn, \@@_round_uncertainty:ennn} % \begin{macro}[EXP]{\@@_round_uncertainty:nnnnnn} % \begin{macro}[EXP] % { % \@@_round_uncertainty_auxi:nnnnn , % \@@_round_uncertainty_auxii:nnnnn % } % \begin{macro}[EXP] % { % \@@_round_uncertainty_auxiii:nnnnnnn , % \@@_round_uncertainty_auxiii:eennnnn % } % \begin{macro}[EXP]{\@@_round_uncertainty_zeros:nnnn} % \begin{macro}[EXP] % { % \@@_round_uncertainty_auxiv:nnnnnnN , % \@@_round_uncertainty_auxiv:nennnnN , % \@@_round_uncertainty_auxiv:ennnnnN , % \@@_round_uncertainty_auxiv:eennnnN % } % \begin{macro}[EXP]{\@@_round_uncertainty_auxv:nnnN} % \begin{macro}[EXP]{\@@_round_uncertainty_auxvi:nn} % \begin{macro}[EXP]{\@@_round_uncertainty_auxvii:nnNnnn} % \begin{macro}[EXP] % { % \@@_round_uncertainty_engineering:nnn , % \@@_round_uncertainty_fixed:nnn , % \@@_round_uncertainty_input:nnn , % \@@_round_uncertainty_scientific:nnn , % \@@_round_uncertainty_threshold:nnn % } % \begin{macro}[EXP] % { % \@@_round_uncertainty_engineering_2:n , % \@@_round_uncertainty_engineering_3:n , % \@@_round_uncertainty_engineering_4:n % } % Rounding to an uncertainty can only happen where the result will have some % uncertainty left: otherwise we simply drop the uncertainty entirely. Only % |S|-type uncertainties can be used for rounding. % \begin{macrocode} \cs_new:Npn \@@_round_uncertainty:nnnnnnn #1#2#3#4#5#6#7 { \bool_lazy_or:nnTF { \tl_if_blank_p:n {#5} } { ! \int_compare_p:nNn \l_@@_round_precision_int > 0 } { \exp_not:n { {#1} {#2} {#3} {#4} { } {#6} {#7} } } { \str_if_eq:eeTF { \tl_head:n {#5} } { S } { \exp_not:n { {#1} {#2} } \@@_round_uncertainty:nno {#3} {#4} { \use_ii:nn #5 } {#6} {#7} } { \exp_not:n { {#1} {#2} {#3} {#4} {#5} {#6} {#7} } } } } % \end{macrocode} % Round the uncertainty first: this is needed to get the number of places % correct. Once that is done, it's just a question of working out the digits % in the main part. % \begin{macrocode} \cs_new:Npn \@@_round_uncertainty:nnn #1#2#3 { \@@_round_uncertainty:ennn { \int_eval:n { \tl_count:n {#3} - \l_@@_round_precision_int } } {#1} {#2} {#3} } \cs_generate_variant:Nn \@@_round_uncertainty:nnn { nno } \cs_new:Npn \@@_round_uncertainty:nnnn #1#2#3#4 { \use:e { \exp_not:N \@@_round_uncertainty:nnnnnn \@@_round:Vnnn \l_@@_round_uncert_dir_tl {#1} { } {#4} {#2} {#3} {#1} {#4} } } \cs_generate_variant:Nn \@@_round_uncertainty:nnnn { e } % \end{macrocode} % The number of digits to remove from the main part and the detail of % zero filling depends on whether we rounded up the uncertainty. So there % is a split here. % \begin{macrocode} \cs_new:Npn \@@_round_uncertainty:nnnnnn #1#2#3#4#5#6 { \tl_if_blank:nTF {#1} { \@@_round_uncertainty_auxi:nnnnn } { \@@_round_uncertainty_auxii:nnnnn } {#2} {#3} {#4} {#5} {#6} } % \end{macrocode} % The simple case: just round to the same number of digits and do zero % filling. % \begin{macrocode} \cs_new:Npn \@@_round_uncertainty_auxi:nnnnn #1#2#3#4#5 { \@@_round_uncertainty_auxiv:ennnnnN { \@@_round_uncertainty_zeros:nnnn {#1} {#3} {#4} {#5} } {#4} {#2} {#3} {#1} { } \@@_round_uncertainty_auxvi:nn } % \end{macrocode} % When the uncertainty rounds up, zero filling is dependent on whether we % cross the boundary for the integer part. % \begin{macrocode} \cs_new:Npn \@@_round_uncertainty_auxii:nnnnn #1#2#3#4#5 { \@@_round_uncertainty_auxiii:eennnnn { \tl_count:n {#5} } { \tl_count:n {#3} } {#1} {#2} {#3} {#4} {#5} } \cs_new:Npn \@@_round_uncertainty_auxiii:nnnnnnn #1#2#3#4#5#6#7 { \int_compare:nNnTF {#1} < { #2 + 1 } { \bool_lazy_and:nnTF { \int_compare_p:nNn \l_@@_round_precision_int = 2 } { \int_compare_p:nNn {#1} = {#2} } { \@@_round_uncertainty_auxiv:nennnnN { 0 } } { \@@_round_uncertainty_auxiv:nennnnN { } } { \int_eval:n { #6 + 1 } } {#4} {#5} { 1 } { } \@@_round_uncertainty_auxvii:nnNnnn } { \@@_round_uncertainty_auxiv:eennnnN { \@@_round_uncertainty_zeros:nnnn {#3} {#5} {#6} {#7} } { \int_eval:n { #6 + 1 } } {#4} {#5} { 1 } {#3} \@@_round_uncertainty_auxvii:nnNnnn } } \cs_generate_variant:Nn \@@_round_uncertainty_auxiii:nnnnnnn { ee } \cs_new:Npn \@@_round_uncertainty_zeros:nnnn #1#2#3#4 { \prg_replicate:nn { \int_max:nn { \tl_if_blank:nTF {#2} { #3 } { ( \tl_count:n {#4} - \tl_count:n {#2} ) - \tl_count:n {#1} } } { 0 } } { 0 } } % \end{macrocode} % Back together for the business end. If there has been a shift, we may need % to tidy up. % \begin{macrocode} \cs_new:Npn \@@_round_uncertainty_auxiv:nnnnnnN #1#2#3#4#5#6#7 { \use:e { \exp_not:N \@@_round_uncertainty_auxv:nnnN \@@_round:nnn {#2} {#3} {#4} } {#3} #7 \@@_round_end:nnn { { S } { #5#6 #1 } } } \cs_generate_variant:Nn \@@_round_uncertainty_auxiv:nnnnnnN { ne , e , ee } \cs_new:Npn \@@_round_uncertainty_auxv:nnnN #1#2#3#4 { \int_compare:nNnT { \tl_count:n {#1} } > { \tl_count:n {#3} } { #4 } {#1} {#2} } \cs_new:Npn \@@_round_uncertainty_auxvi:nn #1#2 { \use:c { @@_round_ \l_@@_exponent_mode_tl :nn } {#1} {#2} } % \end{macrocode} % If there was a rounding up in the uncertainty, there is a bit more to do. % \begin{macrocode} \cs_new:Npn \@@_round_uncertainty_auxvii:nnNnnn #1#2#3#4#5#6 { \bool_lazy_any:nTF { { \str_if_eq_p:Vn \l_@@_exponent_mode_tl { engineering } } { \str_if_eq_p:Vn \l_@@_exponent_mode_tl { scientific } } { \bool_lazy_and_p:nn { \str_if_eq_p:Vn \l_@@_exponent_mode_tl { threshold } } { ! \@@_if_threshold_exceeded_p:n {#5#6} } } } { \use:c { @@_round_uncertainty_ \l_@@_exponent_mode_tl :nnn } {#1} } { \@@_round_uncertainty_auxvi:nn {#1} {#2} \@@_round_end:nnn {#4} } {#5} {#6} } \cs_new:Npn \@@_round_uncertainty_engineering:nnn #1#2#3 { \use:c { @@_round_uncertainty_ \l_@@_exponent_mode_tl _ \tl_count:n {#1} :n } {#2#3} } \cs_new:cpn { @@_round_uncertainty_engineering_2:n } #1 { { 10 } { } { { S } { 10 } } \@@_exponent_finalise:n {#1} } \cs_new:cpn { @@_round_uncertainty_engineering_3:n } #1 { { 100 } { } { { S } { 100 } } \@@_exponent_finalise:n {#1} } \cs_new:cpn { @@_round_uncertainty_engineering_4:n } #1 { { 1 } { } { { S } { 1 } } \@@_exponent_finalise:n { #1 + 3 } } \cs_new:Npn \@@_round_uncertainty_fixed:nnn #1#2#3 { {#1} { } { { S } { 1 \prg_replicate:nn { \tl_count:n {#1} - 1 } { 0 } } } {#2} {#3} } \cs_new_eq:NN \@@_round_uncertainty_input:nnn \@@_round_uncertainty_fixed:nnn \cs_new:Npn \@@_round_uncertainty_scientific:nnn #1#2#3 { { 1 } { } { { S } { 1 } } \@@_exponent_finalise:n { #2#3 + \tl_count:n {#1} - 1 } } % \end{macrocode} % We need to branch here based on the order of magnitude. % \begin{macrocode} \cs_new:Npn \@@_round_uncertainty_threshold:nnn #1#2#3 { \@@_if_threshold_exceeded:nTF {#2#3} { \@@_round_uncertainty_input:nnn } { \@@_round_uncertainty_scientific:nnn } {#1} {#2} {#3} } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_zero_decimal:NN} % \begin{macro}[EXP]{\@@_zero_decimal:nnnnnnn} % Simple stripping of the decimal part if zero. % \begin{macrocode} \cs_new_protected:Npn \@@_zero_decimal:NN #1#2 { \bool_if:NT \l_@@_drop_zero_decimal_bool { \tl_set:Nx #2 { \exp_after:wN \@@_zero_decimal:nnnnnnn #1 } } } \cs_new:Npn \@@_zero_decimal:nnnnnnn #1#2#3#4#5#6#7 { \exp_not:n { {#1} {#2} {#3} } \bool_lazy_and:nnTF { \tl_if_empty_p:n {#5} } { \str_if_eq_p:ee { \exp_not:n {#4} } { \prg_replicate:nn { \tl_count:n {#4} } { 0 } } } { { } } { \exp_not:n { {#4} } } \exp_not:n { {#5} {#6} {#7} } } % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Number modification} % % \begin{macro}[EXP] % {\siunitx_number_adjust_exponent:nn, \siunitx_number_adjust_exponent:Vn} % \begin{macro}[EXP]{\siunitx_number_adjust_exponent:Nn} % \begin{macro}[EXP]{\@@_adjust_exp:nnnnnnnn} % \begin{macro}[EXP]{\@@_adjust_exp:nn, \@@_adjust_exp:en} % \begin{macro}[EXP]{\@@_adjust_exp:nNw} % A simply case of breaking down and rebuilding the number. % \begin{macrocode} \cs_new:Npn \siunitx_number_adjust_exponent:nn #1#2 { \@@_adjust_exp:nnnnnnnn #1 {#2} } \cs_generate_variant:Nn \siunitx_number_adjust_exponent:nn { V } \cs_new:Npn \siunitx_number_adjust_exponent:Nn #1#2 { \tl_if_empty:NF #1 { \siunitx_number_adjust_exponent:Vn #1 {#2} } } \cs_new:Npn \@@_adjust_exp:nnnnnnnn #1#2#3#4#5#6#7#8 { \exp_not:n { {#1} {#2} {#3} {#4} {#5} } \@@_adjust_exp:en { \fp_eval:n { #6#7 + #8 } } {#6} } \cs_new:Npn \@@_adjust_exp:nn #1#2 { \@@_adjust_exp:nNw {#2} #1 \q_stop } \cs_generate_variant:Nn \@@_adjust_exp:nn { e } \cs_new:Npn \@@_adjust_exp:nNw #1#2#3 \q_stop { \token_if_eq_meaning:NNTF #2 - { { - } { \exp_not:n {#3} } } { { \str_if_eq:nnT {#1} { + } { + } } { \exp_not:n {#2#3} } } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \subsection{Outputting parsed numbers} % % \begin{variable}{\l_@@_bracket_close_tl, \l_@@_bracket_open_tl} % Purely internal for the present. % \begin{macrocode} \tl_new:N \l_@@_bracket_close_tl \tl_new:N \l_@@_bracket_open_tl \tl_set:Nn \l_@@_bracket_open_tl { ( } \tl_set:Nn \l_@@_bracket_close_tl { ) } % \end{macrocode} % \end{variable} % % \begin{variable}{\l_siunitx_number_bracket_ambiguous_bool} % \begin{macrocode} \bool_new:N \l_siunitx_number_bracket_ambiguous_bool % \end{macrocode} % \end{variable} % % \begin{variable}{\l_siunitx_number_output_decimal_tl} % \begin{macrocode} \tl_new:N \l_siunitx_number_output_decimal_tl % \end{macrocode} % \end{variable} % % \begin{variable} % { % \l_@@_bracket_negative_bool , % \l_@@_implicit_plus_mant_bool , % \l_@@_implicit_plus__exp_bool , % \l_@@_exponent_base_tl , % \l_@@_exponent_product_tl , % \l_@@_group_size_int , % \l_@@_group_first_int , % \l_@@_group_decimal_bool , % \l_@@_group_integer_bool , % \l_@@_group_minimum_int , % \l_@@_group_separator_tl , % \l_@@_negative_color_tl , % \l_@@_output_exp_marker_tl , % \l_@@_output_uncert_close_tl , % \l_@@_output_uncert_open_tl , % \l_@@_uncert_break_bool , % \l_@@_uncert_desc_mode_tl , % \l_@@_uncert_desc_separator_tl , % \l_@@_uncert_desc_clist , % \l_@@_uncert_mode_tl , % \l_@@_uncert_separator_tl , % \l_@@_uncert_simplify_bool , % \l_@@_tight_bool , % \l_@@_unity_mantissa_bool , % \l_@@_zero_exponent_bool , % \l_@@_zero_integer_bool % } % Keys producing tokens in the output. % \begin{macrocode} \keys_define:nn { siunitx } { allow-uncertainty-breaks .bool_set:N = \l_@@_uncert_break_bool , bracket-ambiguous-numbers .bool_set:N = \l_siunitx_number_bracket_ambiguous_bool , bracket-negative-numbers .bool_set:N = \l_@@_bracket_negative_bool , exponent-base .tl_set:N = \l_@@_exponent_base_tl , exponent-product .tl_set:N = \l_@@_exponent_product_tl , digit-group-size .meta:n = { digit-group-first-size = {#1} , digit-group-other-size = {#1} } , digit-group-first-size .int_set:N = \l_@@_group_first_int , digit-group-other-size .int_set:N = \l_@@_group_size_int , group-digits .choice: , group-digits / all .code:n = { \bool_set_true:N \l_@@_group_decimal_bool \bool_set_true:N \l_@@_group_integer_bool } , group-digits / decimal .code:n = { \bool_set_true:N \l_@@_group_decimal_bool \bool_set_false:N \l_@@_group_integer_bool } , group-digits / integer .code:n = { \bool_set_false:N \l_@@_group_decimal_bool \bool_set_true:N \l_@@_group_integer_bool } , group-digits / none .code:n = { \bool_set_false:N \l_@@_group_decimal_bool \bool_set_false:N \l_@@_group_integer_bool } , group-digits .default:n = all , group-minimum-digits .int_set:N = \l_@@_group_minimum_int , group-separator .tl_set:N = \l_@@_group_separator_tl , negative-color .tl_set:N = \l_@@_negative_color_tl , output-close-uncertainty .tl_set:N = \l_@@_output_uncert_close_tl , output-decimal-marker .tl_set:N = \l_siunitx_number_output_decimal_tl , output-exponent-marker .tl_set:N = \l_@@_output_exp_marker_tl , output-open-uncertainty .tl_set:N = \l_@@_output_uncert_open_tl , print-implicit-plus .meta:n = { print-mantissa-implicit-plus = {#1} , print-exponent-implicit-plus = {#1} } , print-implicit-plus .default:n = true , print-mantissa-implicit-plus .bool_set:N = \l_@@_implicit_plus_mant_bool , print-exponent-implicit-plus .bool_set:N = \l_@@_implicit_plus_exp_bool , print-unity-mantissa .bool_set:N = \l_@@_unity_mantissa_bool , print-zero-exponent .bool_set:N = \l_@@_zero_exponent_bool , print-zero-integer .bool_set:N = \l_@@_zero_integer_bool , simplify-uncertainty .bool_set:N = \l_@@_uncert_simplify_bool , tight-spacing .bool_set:N = \l_@@_tight_bool , uncertainty-descriptor-mode .choices:nn = { bracket , bracket-separator , separator , subscript } { \tl_set_eq:NN \l_@@_uncert_desc_mode_tl \l_keys_choice_tl } , uncertainty-descriptor-separator .tl_set:N = \l_@@_uncert_desc_separator_tl , uncertainty-descriptors .clist_set:N = \l_@@_uncert_desc_clist , uncertainty-mode .choices:nn = { compact , compact-marker , full , separate } { \tl_set_eq:NN \l_@@_uncert_mode_tl \l_keys_choice_tl } , uncertainty-separator .tl_set:N = \l_@@_uncert_separator_tl , zero-decimal-as-symbol .bool_set:N = \l_@@_zero_symbol_bool , zero-symbol .tl_set:N = \l_@@_zero_symbol_tl } \bool_new:N \l_@@_group_decimal_bool \bool_new:N \l_@@_group_integer_bool \tl_new:N \l_@@_uncert_desc_mode_tl \tl_new:N \l_@@_uncert_mode_tl % \end{macrocode} % \end{variable} % % \begin{macro}[EXP]{\siunitx_number_output:N, \siunitx_number_output:c} % \begin{macro}[EXP]{\siunitx_number_output:n} % \begin{macro}[EXP]{\siunitx_number_output:NN, \siunitx_number_output:cN} % \begin{macro}[EXP]{\siunitx_number_output:nN} % \begin{macro}[EXP]{\@@_output:Nn} % \begin{macro}[EXP]{\@@_output:nn} % \begin{macro}[EXP]{\@@_output:nnnnnnn} % \begin{macro}[EXP]{\@@_output_bracket:nn} % \begin{macro}[EXP]{\@@_output_bracket:w} % \begin{macro}[EXP]{\@@_output_comparator:nn} % \begin{macro}[EXP]{\@@_output_sign:nnn} % \begin{macro}[EXP]{\@@_output_sign:nN} % \begin{macro}[EXP] % {\@@_output_sign_color:w, \@@_output_sign_brackets:w} % \begin{macro}[EXP]{\@@_output_integer:nnn} % \begin{macro}[EXP]{\@@_output_decimal:nn, \@@_output_decimal:en} % \begin{macro}[EXP]{\@@_output_digits:nn} % \begin{macro}[EXP]{\@@_output_digit_separator:N} % \begin{macro}[EXP]{\@@_output_integer_3_3:n} % \begin{macro}[EXP] % { % \@@_output_integer_aux_0:n, % \@@_output_integer_aux_1:n, % \@@_output_integer_aux_2:n % } % \begin{macro}[EXP]{\@@_output_integer_first:nnNN} % \begin{macro}[EXP]{\@@_output_integer_loop:NNNN} % \begin{macro}[EXP]{\@@_output_integer_first:n} % \begin{macro}[EXP]{\@@_output_integer_aux:n, \@@_output_integer_aux:e} % \begin{macro}[EXP]{\@@_output_integer_loop:NnnN} % \begin{macro}[EXP]{\@@_output_decimal_3_3:n} % \begin{macro}[EXP]{\@@_output_decimal_loop:NNNN} % \begin{macro}[EXP]{\@@_output_decimal_3_2:n} % \begin{macro}[EXP]{\@@_output_decimal:NNNw} % \begin{macro}[EXP]{\@@_output_decimal_loop:NN} % \begin{macro}[EXP]{\@@_output_decimal_first:n} % \begin{macro}[EXP]{\@@_output_decimal_loop:NnnN} % \begin{macro}[EXP]{\@@_output_uncertainty:nnn} % \begin{macro}[EXP]{\@@_output_uncertainty_unaligned:n} % \begin{macro}[EXP]{\@@_output_uncert:nnnn} % \begin{macro}[EXP]{\@@_output_uncert:nnnnn, \@@_output_uncert:Vnnnn} % \begin{macro}[EXP]{\@@_output_uncert_first:nnN, \@@_output_uncert_loop:nnN} % \begin{macro}[EXP]{\@@_output_uncert_loop:nnNw} % \begin{macro}[EXP] % { % \@@_output_uncert_desc_bracket:n , % \@@_output_uncert_desc_bracket-separator:n , % \@@_output_uncert_desc_separator:n , % \@@_output_uncert_desc_subscript:n % } % \begin{macro}[EXP]{\@@_output_uncert_A_loop:nnn, \@@_output_uncert_S_loop:nnn} % \begin{macro}[EXP]{\@@_output_uncert_S_loop:w} % \begin{macro}[EXP]{\@@_output_uncert_A:nnnn, \@@_output_uncert_A_multi:nnnn} % \begin{macro}[EXP]{\@@_output_uncert_A:nnnnn} % \begin{macro}[EXP]{\@@_output_uncert_A_aux:nnnn} % \begin{macro}[EXP] % { % \@@_output_uncert_S:nnnn , % \@@_output_uncert_S_sep:nnnn , % \@@_output_uncert_S_multi:nnnn % } % \begin{macro}[EXP] % { % \@@_output_uncert_S_compact:nn , % \@@_output_uncert_S_compact-marker:nn , % \@@_output_uncert_S_full:nn % } % \begin{macro}[EXP] % {\@@_output_uncert_augment:nnnn} % \begin{macro}[EXP] % {\@@_output_uncert_augment:nnn, \@@_output_uncert_augment:enn} % \begin{macro}[EXP] % {\@@_output_uncert_augment:nnnw, \@@_output_uncert_augment:ennw} % \begin{macro}[EXP]{\@@_output_uncert_augment:nnw} % \begin{macro}[EXP] % { % \@@_output_exponent:nnnnn , % \@@_output_exponent_auxi:nnnnn , % \@@_output_exponent_auxii:nnnnn , % \@@_output_exponent_auxiii:nnnnn % } % \begin{macro}[EXP]{\@@_output_exponent_auxiv:nn} % \begin{macro}[EXP]{\@@_output_end:} % The approach to formatting a single number is to split into % the constituent parts. All of the parts are assembled including % inserting tabular alignment markers (which may be empty) for each % separate unit. % \begin{macrocode} \cs_new:Npn \siunitx_number_output:N #1 { \@@_output:Nn #1 { } } \cs_generate_variant:Nn \siunitx_number_output:N { c } \cs_new:Npn \siunitx_number_output:n #1 { \@@_output:nn #1 { } } \cs_new:Npn \siunitx_number_output:NN #1#2 { \@@_output:Nn #1 {#2} } \cs_generate_variant:Nn \siunitx_number_output:NN { c } \cs_new:Npn \siunitx_number_output:nN #1#2 { \@@_output:nn #1 {#2} } \cs_new:Npn \@@_output:Nn #1#2 { \tl_if_empty:NF #1 { \exp_after:wN \@@_output:nnnnnnn #1 {#2} } } \cs_new:Npn \@@_output:nn #1#2 { \tl_if_empty:nF {#1} { \@@_output:nnnnnnn #1 {#2} } } \cs_new:Npn \@@_output:nnnnnnn #1#2#3#4#5#6#7#8 { \@@_output_color:n {#2} \@@_output_comparator:nn {#1} {#8} \@@_output_bracket:nn {#5} {#7} \@@_output_sign:nnn {#1} {#2} {#8} \@@_output_integer:nnn {#3} {#4} {#7} \@@_output_decimal:nn {#4} {#8} \@@_output_uncertainty:nnn {#5} {#4} {#8} \@@_output_exponent:nnnnn {#6} {#7} {#3} {#4} {#8} \@@_output_end: } % \end{macrocode} % Adding brackets for the combination of a separate uncertainty with an % exponent may need brackets. This needs testing up-front, so has to come % before the main formatting routines. % \begin{macrocode} \cs_new:Npn \@@_output_bracket:nn #1#2 { \bool_lazy_all:nT { { \str_if_eq_p:Vn \l_@@_uncert_mode_tl { separate } } { \l_siunitx_number_bracket_ambiguous_bool } { ! \tl_if_blank_p:n {#1} } { \bool_lazy_or_p:nn { \l_@@_zero_exponent_bool } { ! \bool_lazy_or_p:nn { \tl_if_blank_p:n {#2} } { \str_if_eq_p:nn {#2} { 0 } } } } } \@@_output_bracket:w } \cs_new:Npn \@@_output_bracket:w #1 \@@_output_exponent:nnnnn { \exp_not:V \l_@@_bracket_open_tl #1 \exp_not:V \l_@@_bracket_close_tl \@@_output_exponent:nnnnn } % \end{macrocode} % As color for negative values applies to the \emph{whole} output, we have % to deal with it before anything else. % \begin{macrocode} \cs_new:Npn \@@_output_color:n #1 { \bool_lazy_and:nnT { \str_if_eq_p:nn {#1} { - } } { ! \tl_if_empty_p:N \l_@@_negative_color_tl } { \exp_not:N \color { \exp_not:V \l_@@_negative_color_tl } } } % \end{macrocode} % To get the spacing correct this needs to be an ordinary math character. % \begin{macrocode} \cs_new:Npn \@@_output_comparator:nn #1#2 { \tl_if_blank:nF {#1} { \exp_not:n { \mathord {#1} } } \exp_not:n {#2} } % \end{macrocode} % Formatting signs has to deal with some additional formatting requirements % for negative numbers. Making such numbers by bracketing them needs some % rearrangement of the order of tokens, which is set up in the main % formatting macro by the dedicated do-nothing end function. We also have % the comparator passed here: if it is present, we need to deal with % tighter spacing. % \begin{macrocode} \cs_new:Npn \@@_output_sign:nnn #1#2#3 { \tl_if_blank:nTF {#2} { \bool_if:NT \l_@@_implicit_plus_mant_bool { \@@_output_sign:nN {#1} + } } { \str_if_eq:nnTF {#2} { - } { \bool_if:NTF \l_@@_bracket_negative_bool { \@@_output_sign_brackets:w } { \@@_output_sign:nN {#1} - } } { \@@_output_sign:nN {#1} #2 } } \exp_not:n {#3} } \cs_new:Npn \@@_output_sign:nN #1#2 { \tl_if_blank:nTF {#1} { \use:n } { \exp_not:N \mathord } { \exp_not:n {#2} } } \cs_new:Npn \@@_output_sign_brackets:w #1 \@@_output_end: { \exp_not:V \l_@@_bracket_open_tl #1 \exp_not:V \l_@@_bracket_close_tl \@@_output_end: } % \end{macrocode} % Digit formatting leads off with separate functions to allow for a few % \enquote{up front} items before using a common set of tests for some common % cases. The code then splits again as the two types of grouping need % different strategies. % \begin{macrocode} \cs_new:Npn \@@_output_integer:nnn #1#2#3 { \tl_if_blank:nTF {#1} { \bool_lazy_and:nnT { \str_if_eq_p:nn {#3} { 0 } } { ! \l_@@_zero_exponent_bool } { \@@_output_digits:nn { integer } { 1 } } } { \bool_lazy_or:nnT { \l_@@_zero_integer_bool } { ! \str_if_eq_p:nn {#1} { 0 } } { \bool_lazy_any:nT { { \l_@@_unity_mantissa_bool } { ! \str_if_eq_p:nn { #1 . #2 } { 1. } } { \bool_lazy_and_p:nn { \bool_lazy_or_p:nn { \tl_if_blank_p:n {#3} } { \str_if_eq_p:nn {#3} { 0 } } } { ! \l_@@_zero_exponent_bool } } { \bool_lazy_and_p:nn { \str_if_eq_p:nn {#1} { 0 } } { \l_@@_zero_integer_bool } } } { \@@_output_digits:nn { integer } {#1} } } } } \cs_new:Npn \@@_output_decimal:nn #1#2 { \exp_not:n {#2} \tl_if_blank:nF {#1} { \str_if_eq:VnTF \l_siunitx_number_output_decimal_tl { , } { \exp_not:N \mathord } { \use:n } { \exp_not:V \l_siunitx_number_output_decimal_tl } } \exp_not:n {#2} \str_if_eq:nnF {#1} { \empty } { \bool_lazy_and:nnTF { \l_@@_zero_symbol_bool } { \str_if_eq_p:ee {#1} { \prg_replicate:nn { \tl_count:n {#1} } { 0 } } } { \exp_not:V \l_@@_zero_symbol_tl } { \@@_output_digits:nn { decimal } {#1} } } } \cs_generate_variant:Nn \@@_output_decimal:nn { e } \cs_new:Npn \@@_output_digits:nn #1#2 { \bool_if:cTF { l_@@_group_ #1 _ bool } { \int_compare:nNnTF { \tl_count:n {#2} } < \l_@@_group_minimum_int { \exp_not:n {#2} } { \cs_if_exist_use:cF { @@_output_ #1 _ \int_use:N \l_@@_group_first_int _ \int_use:N \l_@@_group_size_int :n } { \use:c { @@_output_ #1 _first:n } } {#2} } } { \exp_not:n {#2} } } % \end{macrocode} % An auxiliary to ensure spacing is correct. % \begin{macrocode} \cs_new:Npn \@@_output_digit_separator:N #1 { \str_if_eq:VnTF #1 { , } { \exp_not:N \mathord } { \use:n } { \exp_not:V #1 } } % \end{macrocode} % For standard grouping of integers, we need to know how many digits there % are to allow for the correct insertion of separators. That is done using % a two-part set up such that there is no separator on the first pass. % \begin{macrocode} \cs_new:cpn { @@_output_integer_3_3:n } #1 { \use:c { @@_output_integer_aux_ \int_eval:n { \int_mod:nn { \tl_count:n {#1} } { 3 } } :n } {#1} } \cs_new:cpn { @@_output_integer_aux_0:n } #1 { \@@_output_integer_first:nnNN #1 \q_nil } \cs_new:cpn { @@_output_integer_aux_1:n } #1 { \@@_output_integer_first:nnNN { } { } #1 \q_nil } \cs_new:cpn { @@_output_integer_aux_2:n } #1 { \@@_output_integer_first:nnNN { } #1 \q_nil } \cs_new:Npn \@@_output_integer_first:nnNN #1#2#3#4 { \exp_not:n {#1#2#3} \quark_if_nil:NF #4 { \@@_output_integer_loop:NNNN #4 } } \cs_new:Npn \@@_output_integer_loop:NNNN #1#2#3#4 { \@@_output_digit_separator:N \l_@@_group_separator_tl \exp_not:n {#1#2#3} \quark_if_nil:NF #4 { \@@_output_integer_loop:NNNN #4 } } % \end{macrocode} % There is no clever way of doing an uneven integer grouping, so just provide % a slow generic approach. This is more-or-less the same as the generic % decimal code, but with the output reversed. The only wrinkle is we need to % reverse the entire input again, so it has to be carried as an argument. % \begin{macrocode} \cs_new:Npn \@@_output_integer_first:n #1 { \@@_output_integer_aux:e { \tl_reverse:n {#1} } } \cs_new:Npn \@@_output_integer_aux:n #1 { \@@_output_integer_loop:NnnN \l_@@_group_first_int { 0 } { } #1 \q_recursion_tail \q_recursion_stop } \cs_generate_variant:Nn \@@_output_integer_aux:n { e } \cs_new:Npn \@@_output_integer_loop:NnnN #1#2#3#4 { \quark_if_recursion_tail_stop_do:Nn #4 {#3} \int_compare:nNnTF { #2 + 1 } > #1 { \@@_output_integer_loop:NnnN \l_@@_group_size_int { 1 } { \exp_not:n {#4} \@@_output_digit_separator:N \l_@@_group_separator_tl #3 } } { \@@_output_integer_loop:NnnN #1 { #2 + 1 } { \exp_not:n {#4} #3 } } } % \end{macrocode} % For standard decimal grouping, no need to do any counting, just loop using % enough markers to find the end of the list. By passing the decimal marker, % it is possible not to have to use a check on the content of the rest of % the number. The |\use_none:n(n)| mop up the remaining |\q_nil| tokens. % \begin{macrocode} \cs_new:cpn { @@_output_decimal_3_3:n } #1 { \@@_output_decimal_loop:NNNN \c_empty_tl #1 \q_nil \q_nil \q_nil } \cs_new:Npn \@@_output_decimal_loop:NNNN #1#2#3#4 { \quark_if_nil:NF #2 { \@@_output_digit_separator:N #1 \exp_not:n {#2} \quark_if_nil:NTF #3 { \use_none:n } { \exp_not:n {#3} \quark_if_nil:NTF #4 { \use_none:nn } { \exp_not:n {#4} \@@_output_decimal_loop:NNNN \l_@@_group_separator_tl } } } } % \end{macrocode} % The same trick for the group-of-two case, but as the first pass is already % done, there is not need to worry about the separator. % \begin{macrocode} \cs_new:cpn { @@_output_decimal_3_2:n } #1 { \int_compare:nNnTF { \tl_count:n {#1} } > 2 { \@@_output_decimal:NNNw #1 \q_stop } { \exp_not:n {#1} } } \cs_new:Npn \@@_output_decimal:NNNw #1#2#3#4 \q_stop { \exp_not:n {#1#2#3} \@@_output_decimal_loop:NN #4 \q_nil \q_nil } \cs_new:Npn \@@_output_decimal_loop:NN #1#2 { \quark_if_nil:NF #1 { \@@_output_digit_separator:N \l_@@_group_separator_tl \exp_not:n {#1} \quark_if_nil:NTF #2 { \use_none:n } { \exp_not:n {#2} \@@_output_decimal_loop:NN } } } % \end{macrocode} % The generic decimal separator: simply count the digits. % \begin{macrocode} \cs_new:Npn \@@_output_decimal_first:n #1 { \@@_output_decimal_loop:NnnN \l_@@_group_first_int { 0 } { } #1 \q_recursion_tail \q_recursion_stop } \cs_new:Npn \@@_output_decimal_loop:NnnN #1#2#3#4 { \quark_if_recursion_tail_stop_do:Nn #4 { \exp_not:n {#3} } \int_compare:nNnTF { #2 + 1 } > #1 { \exp_not:n {#3} \@@_output_digit_separator:N \l_@@_group_separator_tl \@@_output_decimal_loop:NnnN \l_@@_group_size_int { 1 } {#4} } { \@@_output_decimal_loop:NnnN #1 { #2 + 1 } { #3 #4 } } } % \end{macrocode} % The lead-off here is to deal with the common cases: no uncertainty at all % or a single uncertainty. Otherwise we have to move to a mapping. % \begin{macrocode} \cs_new:Npn \@@_output_uncertainty:nnn #1#2#3 { \tl_if_blank:nTF {#1} { \@@_output_uncertainty_unaligned:n {#3} } { \cs_if_exist:cTF { @@_output_uncert_ \tl_head:n {#1} :nnnn } { \use:c { @@_output_uncert_ \tl_head:n {#1} :nnnn } {#2} {#3} #1 } { \@@_output_uncert:nnnn {#2} {#3} #1 } } } \cs_new:Npn \@@_output_uncertainty_unaligned:n #1 { \exp_not:n { #1 #1 #1 #1 } } % \end{macrocode} % For handling a list of uncertainties, we also need the descriptors. There % is no way to reasonably deal with alignment of an open-ended list, so % the treatment is as-for no uncertainty at all. % \begin{macrocode} \cs_new:Npn \@@_output_uncert:nnnn #1#2#3#4 { \@@_output_uncert:Vnnnn \l_@@_uncert_desc_clist {#1} {#2} {#3} {#4} } \cs_new:Npn \@@_output_uncert:nnnnn #1#2#3#4#5 { \@@_output_uncert_first:nnN {#2} {#3} #4 \q_recursion_tail #1 , \q_recursion_stop {#5} } \cs_generate_variant:Nn \@@_output_uncert:nnnnn { V } \cs_new:Npn \@@_output_uncert_first:nnN #1#2#3 { \@@_output_uncert_loop:nnNw {#1} {#2} #3 } \cs_new:Npn \@@_output_uncert_loop:nnN #1#2#3 { \quark_if_recursion_tail_stop:N #3 \@@_output_uncert_loop:nnNw {#1} { } #3 } \cs_new:Npn \@@_output_uncert_loop:nnNw #1#2#3#4 \q_recursion_tail #5 , #6 \q_recursion_stop #7 { \use:c { @@_output_uncert_ #3 _loop:nnn } {#1} {#2} {#7} \tl_if_blank:nF {#5} { \use:c { @@_output_uncert_desc_ \l_@@_uncert_desc_mode_tl :n } {#5} } \@@_output_uncert_loop:nnN {#1} {#2} #4 \q_recursion_tail #6 , \q_recursion_stop } \cs_new:Npn \@@_output_uncert_desc_bracket:n #1 { \exp_not:V \l_@@_bracket_open_tl \exp_not:V \l_siunitx_unit_font_tl { \exp_not:n {#1} } \exp_not:V \l_@@_bracket_close_tl } \cs_new:cpn { @@_output_uncert_desc_bracket-separator:n } #1 { \exp_not:V \l_@@_uncert_desc_separator_tl \exp_not:V \l_@@_bracket_open_tl \exp_not:V \l_siunitx_unit_font_tl { \exp_not:n {#1} } \exp_not:V \l_@@_bracket_close_tl } \cs_new:Npn \@@_output_uncert_desc_separator:n #1 { \exp_not:V \l_@@_uncert_desc_separator_tl \exp_not:V \l_siunitx_unit_font_tl { \exp_not:n {#1} } } \cs_new:Npx \@@_output_uncert_desc_subscript:n #1 { \char_generate:nn { `\_ } { 8 } { \exp_not:N \exp_not:V \exp_not:N \l_siunitx_unit_font_tl { \exp_not:N \exp_not:n {#1} } } } % \end{macrocode} % Here, we have to tidy up so the alignment point only applies to the first % |S|-type uncertainty. % \begin{macrocode} \cs_new:Npn \@@_output_uncert_A_loop:nnn #1#2#3 { \@@_output_uncert_A_multi:nnnn {#1} {#2} { A } {#3} } \cs_new:Npn \@@_output_uncert_S_loop:nnn #1#2#3 { \@@_output_uncert_S_multi:nnnn {#1} {#2} { S } {#3} \@@_output_uncert_S_loop:w } \cs_new:Npn \@@_output_uncert_S_loop:w #1 \@@_output_uncert_loop:nnN #2#3 { #1 \@@_output_uncert_loop:nnN {#2} { } } % \end{macrocode} % Printing an asymmetrical uncertainty is more straight-forward as they are % always given in a single format. The only issue is handling the catcode. % \begin{macrocode} \cs_new:Npn \@@_output_uncert_A:nnnn #1#2#3#4 { \@@_output_uncert_A:nnnnn {#1} {#2} {#3} #4 } \cs_new_eq:NN \@@_output_uncert_A_multi:nnnn \@@_output_uncert_A:nnnn \cs_new:Npn \@@_output_uncert_A:nnnnn #1#2#3#4#5 { \bool_lazy_and:nnTF { \l_@@_uncert_simplify_bool } { \str_if_eq_p:nn {#4} {#5} } { \@@_output_uncert_S_sep:nnnn {#1} {#2} { } {#4} } { \@@_output_uncert_A_aux:nnnn {#1} {#2} {#4} {#5} } } \cs_new:Npx \@@_output_uncert_A_aux:nnnn #1#2#3#4 { { } ^ { + \exp_not:N \@@_output_uncert_augment:nnnn {#3} {#1} {#3} { } } \char_generate:nn { `\_ } { 8 } { - \exp_not:N \@@_output_uncert_augment:nnnn {#4} {#1} {#4} { } } \exp_not:N \@@_output_uncertainty_unaligned:n {#2} } % \end{macrocode} % Uncertainties which are directly attached are easy to deal with. For those % that are separated, the first step is to find if they are entirely % contained within the decimal part, and to pad if they are. For the case % where the boundary is crossed to the integer part, the correct number of % digit tokens need to be removed from the start of the uncertainty and % the split result sent to the appropriate auxiliaries. % \begin{macrocode} \cs_new:Npn \@@_output_uncert_S:nnnn #1#2#3#4 { \str_if_eq:VnTF \l_@@_uncert_mode_tl { separate } { \@@_output_uncert_S_sep:nnnn {#1} {#2} {#3} {#4} } { \exp_not:V \l_@@_uncert_separator_tl \exp_not:V \l_@@_output_uncert_open_tl \use:c { @@_output_uncert_S_ \l_@@_uncert_mode_tl :nn } {#1} {#4} \exp_not:V \l_@@_output_uncert_close_tl \@@_output_uncertainty_unaligned:n {#2} } } \cs_new:Npn \@@_output_uncert_S_sep:nnnn #1#2#3#4 { \exp_not:n {#2} \bool_if:NTF \l_@@_tight_bool { \exp_not:N \mathord } { \use:n } { \pm } \bool_if:NF \l_@@_uncert_break_bool { \exp_not:N \nobreak } \exp_not:n {#2} \@@_output_uncert_augment:nnnn {#4} {#1} {#4} {#2} } \cs_new_eq:NN \@@_output_uncert_S_multi:nnnn \@@_output_uncert_S_sep:nnnn % \end{macrocode} % Handle the content of brackets: the only complex case is the % mixed situation. % \begin{macrocode} \cs_new:Npn \@@_output_uncert_S_compact:nn #1#2 { \exp_not:n {#2} } \cs_new:cpn { @@_output_uncert_S_compact-marker:nn } #1#2 { \bool_lazy_or:nnTF { \tl_if_blank_p:n {#1} } { ! \int_compare_p:nNn { \tl_count:n {#2} } > { \tl_count:n {#1} } } { \@@_output_uncert_S_compact:nn } { \@@_output_uncert_S_full:nn } {#1} {#2} } \cs_new:Npn \@@_output_uncert_S_full:nn #1#2 { \@@_output_uncert_augment:nnnn {#2} {#1} {#2} { } } % \end{macrocode} % Convert the internal (short) form of an uncertainty to the longer form. % \begin{macrocode} \cs_new:Npn \@@_output_uncert_augment:nnnn #1#2#3#4 { \@@_output_uncert_augment:enn { \int_eval:n { \tl_count:n {#1} - \tl_count:n {#2} } } {#3} {#4} } \cs_new:Npn \@@_output_uncert_augment:nnn #1#2#3 { \int_compare:nNnTF {#1} > 0 { \@@_output_uncert_augment:ennw { \int_eval:n { #1 - 1 } } {#3} { } #2 \q_nil } { 0 \@@_output_decimal:en { \prg_replicate:nn { \int_abs:n {#1} } { 0 } #2 } {#3} } } \cs_generate_variant:Nn \@@_output_uncert_augment:nnn { e } \cs_new:Npn \@@_output_uncert_augment:nnnw #1#2#3#4 { \quark_if_nil:NF #4 { \int_compare:nNnTF {#1} = 0 { \@@_output_uncert_augment:nnw {#3#4} {#2} } { \@@_output_uncert_augment:ennw { \int_eval:n { #1 - 1 } } {#2} {#3#4} } } } \cs_generate_variant:Nn \@@_output_uncert_augment:nnnw { e } \cs_new:Npn \@@_output_uncert_augment:nnw #1#2#3 \q_nil { \@@_output_digits:nn { integer } {#1} \@@_output_decimal:nn {#3} {#2} } % \end{macrocode} % Setting the exponent part requires some information about the mantissa: % was it there or not. This means that whilst only the sign and value for % the exponent are typeset here, there is a need to also have access to the % combined mantissa part (with a decimal marker). The rest of the work is % about picking up the various options and getting the combinations right. % For signs, the auxiliary from the main sign routine can be used, but not % the main function: negative exponents don't have special handling. % \begin{macrocode} \cs_new:Npn \@@_output_exponent:nnnnn #1#2#3#4#5 { \exp_not:n {#5} \str_if_empty:nTF {#2} { \bool_if:NTF \l_@@_zero_exponent_bool { \@@_output_exponent_auxi:nnnnn {#1} { 0 } {#3} {#4} {#5} } { \exp_not:n {#5} } } { \@@_output_exponent_auxi:nnnnn {#1} {#2} {#3} {#4} {#5} } } \cs_new:Npn \@@_output_exponent_auxi:nnnnn #1#2#3#4#5 { \bool_lazy_or:nnTF { \l_@@_zero_exponent_bool } { ! \str_if_eq_p:nn {#2} { 0 } } { \tl_if_empty:NTF \l_@@_output_exp_marker_tl { \@@_output_exponent_auxii:nnnnn } { \@@_output_exponent_auxiii:nnnnn } {#1} {#2} {#3} {#4} {#5} } { \exp_not:n {#5} } } \cs_new:Npn \@@_output_exponent_auxii:nnnnn #1#2#3#4#5 { \bool_lazy_or:nnT { \bool_lazy_and_p:nn { \l_@@_unity_mantissa_bool } { \str_if_eq_p:nn { #3 . #4 } { 1. } } } { ! \bool_lazy_or_p:nn { \str_if_eq_p:nn { #3 . #4 } { 1. } } { \tl_if_blank_p:n {#3} } } { \bool_if:NTF \l_@@_tight_bool { \exp_not:N \mathord } { \use:n } { \exp_not:V \l_@@_exponent_product_tl } } \exp_not:n {#5} \exp_not:V \l_@@_exponent_base_tl ^ { \@@_output_exponent_auxiv:nnn { } {#1} {#2} } } \cs_new:Npn \@@_output_exponent_auxiii:nnnnn #1#2#3#4#5 { \exp_not:n {#5} \exp_not:V \l_@@_output_exp_marker_tl \@@_output_exponent_auxiv:nnn { \mathord } {#1} {#2} } \cs_new:Npn \@@_output_exponent_auxiv:nnn #1#2#3 { \tl_if_blank:nTF {#2} { \bool_lazy_and:nnT { \l_@@_implicit_plus_exp_bool } { ! \str_if_eq_p:nn {#3} { 0 } } { #1 + } } { \exp_not:n {#1#2} } \@@_output_digits:nn { integer } {#3} } % \end{macrocode} % A do-nothing marker used to allow shuffling of the output and so expandable % operations for formatting. % \begin{macrocode} \cs_new:Npn \@@_output_end: { } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \subsection{Miscellaneous tools} % % \begin{variable}{\l_@@_valid_tl} % The list of valid tokens. % \begin{macrocode} \tl_new:N \l_@@_valid_tl % \end{macrocode} % \end{variable} % % \begin{macro}[TF]{\siunitx_if_number:n} % Test if an entire number is valid: this means parsing the number but not % returning anything. % \begin{macrocode} \prg_new_protected_conditional:Npnn \siunitx_if_number:n #1 { T , F , TF } { \group_begin: \bool_set_true:N \l_@@_validate_bool \bool_set_true:N \l_siunitx_number_parse_bool \siunitx_number_parse:nN {#1} \l_@@_parsed_tl \tl_if_empty:NTF \l_@@_parsed_tl { \group_end: \prg_return_false: } { \group_end: \prg_return_true: } } % \end{macrocode} % \end{macro} % % \begin{macro}[pTF, EXP]{\siunitx_if_number_token:N} % \begin{macro}[EXP] % { % \@@_if_token_auxi:NN , % \@@_if_token_auxii:NN , % \@@_if_token_auxiii:NN % } % A simple conditional to answer the question of whether a specific token is % possibly valid in a number. % \begin{macrocode} \prg_new_conditional:Npnn \siunitx_if_number_token:N #1 { p , T , F , TF } { \@@_token_auxi:NN #1 \l_siunitx_number_input_decimal_tl \l_@@_input_uncert_close_tl \l_siunitx_number_input_comparator_tl \l_@@_input_digit_tl \l_siunitx_number_input_exponent_tl \l_@@_input_ignore_tl \l_@@_input_uncert_open_tl \l_siunitx_number_input_sign_tl \l_@@_input_uncert_sign_tl \l_@@_input_uncert_divide_tl \q_recursion_tail \q_recursion_stop } \cs_new:Npn \@@_token_auxi:NN #1#2 { \quark_if_recursion_tail_stop_do:Nn #2 { \prg_return_false: } \@@_token_auxii:NN #1 #2 \@@_token_auxi:NN #1 } \cs_new:Npn \@@_token_auxii:NN #1#2 { \exp_after:wN \@@_token_auxiii:NN \exp_after:wN #1 #2 \q_recursion_tail \q_recursion_stop } \cs_new:Npn \@@_token_auxiii:NN #1#2 { \quark_if_recursion_tail_stop:N #2 \str_if_eq:nnT {#1} {#2} { \use_i_delimit_by_q_recursion_stop:nw { \use_i_delimit_by_q_recursion_stop:nw { \prg_return_true: } } } \@@_token_auxiii:NN #1 } % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Messages} % % \begin{macrocode} \msg_new:nnnn { siunitx } { invalid-number } { Invalid~number~'#1'. } { The~input~'#1'~could~not~be~parsed~as~a~number~following~the~ format~defined~in~module~documentation. } \msg_new:nnnn { siunitx } { ambiguous-dropped-exponent } { Potentially~ambiguous~dropping~of~exponent. } { The~option~"drop-exponent"~is~active~but~values~do~not~have~an~ exponent~fixed~by~"exponent-mode".~The~result~could~be~misleading. } % \end{macrocode} % % \subsection{Standard settings for module options} % % Some of these follow naturally from the point of definition % (\foreign{e.g.}~boolean variables are always |false| to begin with), % but for clarity everything is set here. % \begin{macrocode} \keys_set:nn { siunitx } { allow-uncertainty-breaks = true , bracket-ambiguous-numbers = true , bracket-negative-numbers = false , drop-exponent = false , drop-uncertainty = false , drop-zero-decimal = false , evaluate-expression = false , exponent-base = 10 , exponent-mode = input , exponent-product = \times , expression = #1 , fixed-exponent = 0 , digit-group-size = 3 , digit-group-first-size = 3 , digit-group-other-size = 3 , group-digits = all , group-minimum-digits = 5 , group-separator = \, , % ( input-close-uncertainty = ) , input-comparators = { <=>\approx\ge\geq\gg\le\leq\ll\sim } , input-decimal-markers = { ., } , input-digits = 0123456789 , input-exponent-markers = dDeE , input-ignore = \, , input-open-uncertainty = ( , % ) input-signs = +-\mp\pm , input-uncertainty-signs = \pm , minimum-decimal-digits = 0 , minimum-integer-digits = 0 , negative-color = , % ( output-close-uncertainty = ) , output-decimal-marker = . , output-open-uncertainty = ( , % ) parse-numbers = true , print-exponent-implicit-plus = false , print-implicit-plus = false , print-mantissa-implicit-plus = false , print-unity-mantissa = true , print-zero-exponent = false , print-zero-integer = true , retain-explicit-decimal-marker = false , retain-explicit-plus = false , retain-negative-zero = false , retain-zero-uncertainty = false , round-direction = nearest , round-half = up , round-minimum = 0 , round-mode = none , round-pad = true , round-precision = 2 , round-zero-positive = true , simplify-uncertainty = false , tight-spacing = false , uncertainty-descriptor-mode = bracket-separator , uncertainty-descriptor-separator = \ , uncertainty-descriptors = , uncertainty-mode = compact , uncertainty-round-direction = nearest , uncertainty-separator = , zero-decimal-as-symbol = false , zero-symbol = \mbox { --- } } % \end{macrocode} % Two awkward settings. % \begin{macrocode} \keys_set:nx { siunitx } { exponent-thresholds = -3 \c_colon_str 3 , input-uncertainty-divider = \c_colon_str } % \end{macrocode} % % \begin{macrocode} % % \end{macrocode} % % \end{implementation} % % \PrintIndex